IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p394-d430873.html
   My bibliography  Save this article

Impacts of Future Crop Tree Release Treatments on Forest Carbon as REDD+ Mitigation Benefits

Author

Listed:
  • Sebastian Gräfe

    (World Forestry, University of Hamburg, D-21031 Hamburg, Germany)

  • Michael Köhl

    (World Forestry, University of Hamburg, D-21031 Hamburg, Germany)

Abstract

Sustainable forest management activities, such as future crop tree (FCT) release treatments, became part of the REDD+ strategy to avoid carbon emissions from forests. FCT release treatments are intended to achieve increased growth of FCTs by removing competitor trees. This initially leads to a reduction of the forest carbon pool and represents a carbon debt. We estimated that the time it takes for FCTs to offset the carbon debt through increased growth on experimental sites of 10 km² in Belize, Guyana, Suriname, and Trinidad and Tobago. We further investigated whether the costs of treatment can be compensated by the generated financial carbon benefits. An average of 2.3 FCT per hectare were released through the removal of an average of 3.3 competitors per hectare. This corresponds to an average above ground biomass (AGB) deficit of 2.3 Mg FCT −1 . Assuming a 30% increase in growth, the FCT would need on average 130 years to offset the carbon loss. For carbon prices from US$ 5 to 100 Mg CO 2 e −1 an additional increment between 0.6 and 22.7 Mg tree −1 would be required to cover the treatment costs of US$ 4.2 to 8.4 FCT −1 . Assuming a carbon price of US$ 10 Mg CO 2 e −1 , the additional increment required would be between 5.8 and 11.4 Mg tree −1 , thus exceeding the biological growth potential of most individual trees. The release of FCTs does not ensure an increase in forest carbon stocks, and refinancing of treatment costs is problematic.

Suggested Citation

  • Sebastian Gräfe & Michael Köhl, 2020. "Impacts of Future Crop Tree Release Treatments on Forest Carbon as REDD+ Mitigation Benefits," Land, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:394-:d:430873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 2020. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787, May.
    2. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods," International Journal of Production Economics, Elsevier, vol. 42(1), pages 79-96, November.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Tom Arnold, 2014. "A Pragmatic Guide to Real Options," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-39116-2.
    5. Tom Arnold, 2014. "How Net Present Value Is Implemented," Palgrave Macmillan Books, in: A Pragmatic Guide to Real Options, chapter 0, pages 1-13, Palgrave Macmillan.
    6. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 0. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coomes, Oliver T. & Cheng, Yuanyu & Takasaki, Yoshito & Abizaid, Christian, 2021. "What drives clearing of old-growth forest over secondary forests in tropical shifting cultivation systems? Evidence from the Peruvian Amazon," Ecological Economics, Elsevier, vol. 189(C).
    2. Mehraj A. Sheikh & Munesh Kumar & N. P. Todaria & Jahangeer A. Bhat & Amit Kumar & Rajiv Pandey, 2021. "Contribution of Cedrus deodara forests for climate mitigation along altitudinal gradient in Garhwal Himalaya, India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-19, January.
    3. Clemens Fuchs & Joachim Kasten & Maxi Vent, 2020. "Current State and Future Prospective of Repowering Wind Turbines: An Economic Analysis," Energies, MDPI, vol. 13(12), pages 1-13, June.
    4. Silvina M. Manrique & Judith Franco, 2020. "Tree cover increase mitigation strategy: implications of the “replacement approach” in carbon storage of a subtropical ecosystem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1481-1508, December.
    5. Mohammadali Norouzi & Matti Lehtonen, 2019. "Providing Fault Ride-Through Capability of Turbo-Expander in a Thermal Power Plant," Energies, MDPI, vol. 12(21), pages 1-19, October.
    6. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    7. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    8. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    9. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    11. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    12. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    14. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    15. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    16. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    18. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    20. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:394-:d:430873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.