IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v6y2017i1p19-d92363.html
   My bibliography  Save this article

Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA

Author

Listed:
  • Sandra L. Haire

    (Haire Laboratory for Landscape Ecology, Rockport, MA 01966, USA)

  • Jonathan D. Coop

    (Center for Environment and Sustainability, Western State Colorado University, Gunnison, CO 81231, USA)

  • Carol Miller

    (Aldo Leopold Wilderness Research Institute, USDA Forest Service, Missoula, MT 59801, USA)

Abstract

The spatial patterns resulting from large fires include refugial habitats that support surviving legacies and promote ecosystem recovery. To better understand the diverse ecological functions of refugia on burn mosaics, we used remotely sensed data to quantify neighborhood patterns of areas relatively unchanged following the 2011 Las Conchas fire. Spatial patterns of refugia measured within 10-ha moving windows varied across a gradient from areas of high density, clustered in space, to sparsely populated neighborhoods that occurred in the background matrix. The scaling of these patterns was related to the underlying structure of topography measured by slope, aspect and potential soil wetness, and spatially varying climate. Using a nonmetric multidimensional scaling analysis of species cover data collected post-Las Conchas, we found that trees and forest associates were present across the refugial gradient, but communities also exhibited a range of species compositions and potential functions. Spatial patterns of refugia quantified for three previous burns (La Mesa 1977, Dome 1996, Cerro Grande 2000) were dynamic between fire events, but most refugia persisted through at least two fires. Efforts to maintain burn heterogeneity and its ecological functions can begin with identifying where refugia are likely to occur, using terrain-based microclimate models, burn severity models and available field data.

Suggested Citation

  • Sandra L. Haire & Jonathan D. Coop & Carol Miller, 2017. "Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA," Land, MDPI, vol. 6(1), pages 1-24, March.
  • Handle: RePEc:gam:jlands:v:6:y:2017:i:1:p:19-:d:92363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/6/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/6/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hurvich, Clifford M. & Tsai, Chih-Ling, 1990. "Model selection for least absolute deviations regression in small samples," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 259-265, March.
    2. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alistair M. S. Smith & James A. Lutz & Chad M. Hoffman & Grant J. Williamson & Andrew T. Hudak, 2018. "Preface: Special Issue on Wildland Fires," Land, MDPI, vol. 7(2), pages 1-4, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    2. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    3. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    4. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    5. Neath, Andrew A. & Cavanaugh, Joseph E., 2000. "A regression model selection criterion based on bootstrap bumping for use with resistant fitting," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 155-169, December.
    6. Sihvonen, Markus, 2021. "Yield curve momentum," Research Discussion Papers 15/2021, Bank of Finland.
    7. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    8. Dillon T. Fogarty & Caleb P. Roberts & Daniel R. Uden & Victoria M. Donovan & Craig R. Allen & David E. Naugle & Matthew O. Jones & Brady W. Allred & Dirac Twidwell, 2020. "Woody Plant Encroachment and the Sustainability of Priority Conservation Areas," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    9. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    11. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    12. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    13. repec:grz:wpaper:2014-05 is not listed on IDEAS
    14. Cathrine Ulla Jensen & Toke Emil Panduro, 2016. "PanJen: A test for functional form with continuous variables," IFRO Working Paper 2016/08, University of Copenhagen, Department of Food and Resource Economics.
    15. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    16. Yuko Araki & Atsushi Kawaguchi & Fumio Yamashita, 2013. "Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 109-119, March.
    17. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    19. Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021. "Higher frequency hedonic property price indices: a state-space approach," Empirical Economics, Springer, vol. 61(1), pages 417-441, July.
    20. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:6:y:2017:i:1:p:19-:d:92363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.