IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p126-d1563331.html
   My bibliography  Save this article

Enhancing Drought Forecast Accuracy Through Informer Model Optimization

Author

Listed:
  • Jieru Wei

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Wensheng Tang

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Pakorn Ditthakit

    (Center of Excellence in Sustainable Disaster Management, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand)

  • Jiandong Shang

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Hengliang Guo

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Bei Zhao

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Gang Wu

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

  • Yang Guo

    (The School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
    National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450000, China)

Abstract

As droughts become more frequent due to climate change and shifts in land use, enhancing the accuracy of drought prediction is becoming crucial for informed land and water resource management. This study employed the Informer model to forecast drought and conducted a comparative analysis with Autoregressive Integrated Moving Average (ARIMA), long short-term memory (LSTM), and Convolutional Neural Network (CNN) models. The findings indicate that the Informer model outperforms the other three models in terms of drought forecasting accuracy across all time scales. Nevertheless, the predictive capacity of the Informer model remains suboptimal when it comes to short-term intervals. Aiming at the problem of drought forecasting accuracy in a short time scale, this study proposed a drought forecasting model named VMD-JAYA-Informer based on Variational Mode Decomposition (VMD) and the JAVA optimization algorithm to improve the Informer model. This study conducted a comparative analysis of VMD-JAYA-ARIMA, VMD-JAYA-LSTM, VMD-JAYA-CNN, and VMD-JAYA-Informer drought prediction models. The performance of these models was evaluated using the root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), and Mean Absolute Error (MAE). The VMD-JAYA-Informer model’s forecast for the 1-month SPEI significantly surpasses that of alternative models and demonstrates a robust agreement with the actual data. Simultaneously, the model exhibits equally optimal forecasting performance across different time scales. In order to validate the VMD-JAYA-Informer model, four meteorological stations in the Songliao River Basin were chosen at random. The validation results demonstrate that VMD-JAYA-Informer outperforms the Informer model in terms of prediction accuracy on the 1-month time scale (NSE values of 0.8663, 0.8765, 0.8822, and 0.8416, respectively). Additionally, the model outperforms Informer in terms of prediction performance on other time scales, further demonstrating its generalizability and excellence in drought prediction on shorter time scales.

Suggested Citation

  • Jieru Wei & Wensheng Tang & Pakorn Ditthakit & Jiandong Shang & Hengliang Guo & Bei Zhao & Gang Wu & Yang Guo, 2025. "Enhancing Drought Forecast Accuracy Through Informer Model Optimization," Land, MDPI, vol. 14(1), pages 1-32, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:126-:d:1563331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. Wei Zheng & Hongliang Qiu & Alastair M. Morrison, 2023. "Applying a Combination of SEM and fsQCA to Predict Tourist Resource-Saving Behavioral Intentions in Rural Tourism: An Extension of the Theory of Planned Behavior," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    3. Janina Jędrzejczak-Gas & Joanna Wyrwa & Anetta Barska, 2024. "Sustainable Energy Development and Sustainable Economic Development in EU Countries," Energies, MDPI, vol. 17(7), pages 1-20, April.
    4. Du Peng & Ehsan Elahi & Zainab Khalid, 2023. "Productive Service Agglomeration, Human Capital Level, and Urban Economic Performance," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    5. Bingquan Liu & Boyang Nie & Yakun Wang & Xuemin Han & Yongqing Li, 2023. "Does New Infrastructure Affect Regional Carbon Intensity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    6. Elias Carayannis & Pantelis Kostis & Hasan Dinçer & Serhat Yüksel, 2024. "Quality Function Deployment-Oriented Strategic Outlook to Sustainable Energy Policies Based on Quintuple Innovation Helix," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 6761-6779, June.
    7. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    8. Theodoros Skevas & Ray Massey & Jasper Grashuis, 2022. "Farmer adoption and intensity of use of extreme weather adaptation and mitigation strategies: evidence from a sample of Missouri farmers," Climatic Change, Springer, vol. 174(1), pages 1-23, September.
    9. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Huitao Shen & Tao Zhang & Yanxia Zhao & Aibin Wu & Zhenhua Zheng & Jiansheng Cao, 2023. "Effects of Precipitation Variation on Annual and Winter Soil Respiration in a Semiarid Mountain Shrubland in Northern China," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    11. Yan Zhao & Ehsan Elahi & Zainab Khalid & Xuegang Sun & Fang Sun, 2023. "Environmental, Social and Governance Performance: Analysis of CEO Power and Corporate Risk," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    12. Min Zhu & Mengqi Sun & Ehsan Elahi & Yajie Li & Zainab Khalid, 2023. "Analyzing the Relationship between Green Finance and Agricultural Industrial Upgrading: A Panel Data Study of 31 Provinces in China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    13. Kasin Ransikarbum & Wattana Chanthakhot & Tony Glimm & Jettarat Janmontree, 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool," Resources, MDPI, vol. 12(4), pages 1-22, April.
    14. Gang Li & Ehsan Elahi & Xingshuai Wang, 2023. "Population age structure, asset price, and financial stability," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2041-2056, June.
    15. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    16. Min Zhu & Haiyun Tang & Ehsan Elahi & Zainab Khalid & Kaili Wang & Nimra Nisar, 2022. "Spatial-Temporal Changes and Influencing Factors of Ecological Protection Levels in the Middle and Lower Reaches of the Yellow River," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    17. Xiaowei Ni & Yongbo Quan, 2023. "Measuring the Sustainable Development of Marine Economy Based on the Entropy Value Method: A Case Study in the Yangtze River Delta, China," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    18. Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
    19. Shi Yin & Shuai Han & Yijie Liu & Yilin Wang, 2024. "Impact of new media use on farmers’ willingness to use clean energy: the role of topography and agricultural income," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    20. Shengnan Huang & Ehsan Elahi, 2022. "Farmers’ Preferences for Recycling Pesticide Packaging Waste: An Implication of a Discrete Choice Experiment Method," Sustainability, MDPI, vol. 14(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:126-:d:1563331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.