IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1514-d1480623.html
   My bibliography  Save this article

Driving the Evolution of Land Use Patterns: The Impact of Urban Agglomeration Construction Land in the Yangtze River Delta, China

Author

Listed:
  • Duanqiang Zhai

    (School of Architecture and Urban Planning, Tongji University, No. 1239 Siping Rd., Shanghai 200092, China
    Key Laboratory of Spatial Intelligent Planning Technology, Ministry of Natural Resources of the People’s Republic of China, No. 1239 Siping Rd., Shanghai 200092, China)

  • Xian Zhang

    (School of Architecture and Urban Planning, Huazhong University of Science and Technology, No. 1037 Luoyu Rd., Wuhan 430074, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, No. 1037 Luoyu Rd., Wuhan 430074, China)

  • Jian Zhuo

    (School of Architecture and Urban Planning, Tongji University, No. 1239 Siping Rd., Shanghai 200092, China
    Key Laboratory of Spatial Intelligent Planning Technology, Ministry of Natural Resources of the People’s Republic of China, No. 1239 Siping Rd., Shanghai 200092, China)

  • Yanyun Mao

    (Urban Mobility Institute, Tongji University, No. 1239 Siping Rd., Shanghai 200092, China)

Abstract

The rapid increase in population and economic activities has greatly influenced land use and spatial development. In urban agglomerations where socioeconomic activities are densely concentrated, the clash between ecological protection and economic growth is becoming more evident. Therefore, a thorough quantitative assessment of spatial changes driven by land use dynamics, alongside an examination of temporal and spatial driving factors, is crucial in offering scientific backing for the long-term and sustainable growth of urban agglomerations. This paper focuses on the major urban agglomerations in China’s Yangtze River Delta region, examining the spatiotemporal evolution of land use and landscape patterns from 2000 to 2020. By employing the standard deviation ellipse technique, coupled with multiple linear regression and the geographical detector model, we conduct a quantitative assessment of the directional trends in urban construction land expansion as well as the diverse impacts of temporal and spatial factors on this expansion across various periods and regions. The findings indicate that over the past 20 years, construction land in the Yangtze River Delta Urban Agglomeration expanded in concentrated patches, showing significant scale effects with relatively intact farmland and forest land being increasingly encroached upon. Landscape-type transitions predominantly occurred in cities around Taihu Lake and Hangzhou Bay, with the most significant transition being farmland converted to construction land, resulting in a greater number of patches and more pronounced land fragmentation. Throughout the 20 years, the standard deviation ellipse of construction land in the Yangtze River Delta Urban Agglomeration expanded and shifted, with the predominant expansion trending from the northwest toward the southeast, and the EN orientation being the most intense expansion area, covering 1641.24 km 2 . The influence of temporal and spatial driving factors on the expansion of urban construction land differed across various periods and regions. This study thoroughly examines the driving factors that affect the evolution of urban construction land in the region, offering valuable scientific evidence and references for future planning and development of the Yangtze River Delta Urban Agglomeration, aiding in the formulation of more precise and efficient urban management and land use strategies.

Suggested Citation

  • Duanqiang Zhai & Xian Zhang & Jian Zhuo & Yanyun Mao, 2024. "Driving the Evolution of Land Use Patterns: The Impact of Urban Agglomeration Construction Land in the Yangtze River Delta, China," Land, MDPI, vol. 13(9), pages 1-34, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1514-:d:1480623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong Lin & Chris Zevenbergen & Jiahao Wang & Yixuan Li & Liyuan Qian, 2024. "Integration of In-VEST Habitat Quality Model with Landscape Pattern Indices to Assess Habitat Fragmentation Under the Dynamic Development of Park City: Southwest China Case," Land, MDPI, vol. 13(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    2. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    3. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    4. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    5. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    6. Yong Li & Liping Wang & Yunfei Yu & Deqiang Zang & Xilong Dai & Shufeng Zheng, 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
    7. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    8. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    9. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    10. Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    11. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    12. Yaya Jin & Jiahe Ding & Yue Chen & Chaozheng Zhang & Xianhui Hou & Qianqian Zhang & Qiankun Liu, 2023. "Urban Land Expansion Simulation Considering the Increasing versus Decreasing Balance Policy: A Case Study in Fenghua, China," Land, MDPI, vol. 12(12), pages 1-21, November.
    13. Yirui Han & Qinqin Pan & Yuee Cao & Jianhong Zhang & Jiaxuan Yuan & Borui Li & Saiqiang Li & Renfeng Ma & Xu Luo & Longbin Sha & Xiaodong Yang, 2022. "Estimation of Grain Crop Yields after Returning the Illegal Nurseries and Orchards to Cultivated Land in the Yangtze River Delta Region," Land, MDPI, vol. 11(11), pages 1-19, November.
    14. Xupeng Zhang & Danling Chen & Xinhai Lu & Yifeng Tang & Bin Jiang, 2021. "Interaction between Land Financing Strategy and the Implementation Deviation of Local Governments’ Cultivated Land Protection Policy in China," Land, MDPI, vol. 10(8), pages 1-16, July.
    15. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    16. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    17. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    18. Shenghao Zhu & Guanyi Yin & Qingzhi Sun & Zhan Zhang & Guanghao Li & Liangfei Gao, 2025. "Structural Changes to China’s Agricultural Business Entities System Under the Perspective of Competitive Evolution," Sustainability, MDPI, vol. 17(7), pages 1-20, March.
    19. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    20. Mengba Liu & Anlu Zhang & Xiong Zhang & Yanfei Xiong, 2022. "Research on the Game Mechanism of Cultivated Land Ecological Compensation Standards Determination: Based on the Empirical Analysis of the Yangtze River Economic Belt, China," Land, MDPI, vol. 11(9), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1514-:d:1480623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.