IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3341-d1376800.html
   My bibliography  Save this article

Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China

Author

Listed:
  • Yong Li

    (School of Government, Heilongjiang University, Harbin 150080, China)

  • Liping Wang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yunfei Yu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Deqiang Zang

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Xilong Dai

    (College of Geographical Science, Harbin Normal University, Harbin 150025, China)

  • Shufeng Zheng

    (School of Government, Heilongjiang University, Harbin 150080, China)

Abstract

The black soil region of northeastern China, one of the world’s major black soil belts, is China’s main grain-producing area, producing a quarter of China’s commercial grain. However, over-exploitation and unsustainable management practices have led to a steady decline in the quality of arable land. Scientific and reasonable zoning of arable land is the key to ensuring that black soil arable land achieves sustainable development. In this study, the 317 districts and counties under the jurisdiction of Heilongjiang, Jilin, and Liaoning Provinces in the northeast region and the four eastern leagues of the Inner Mongolia Autonomous Region were taken as the study area, and arable land zoning in the northeast black soil region was explored through group analysis. Ten types of indicators were selected according to the four levels of climate, soil, vegetation, and topography of the northeast black soil region, including average precipitation and average temperature for many years at the climate level, organic matter content and soil texture (including clay, silt, and sand) at the soil level, NDVI and EVI indicators at the vegetation level, and DEM and slope indicators at the topographic level. In accordance with the principle of distinguishing differences and summarizing commonalities, nine scenarios of dividing the northeast black soil zones into 2 regions to 10 regions were explored, and these nine zoning scenarios were evaluated in terms of zoning. The results showed that (1) the spatial variability of cropland zoning in the northeast black soil zone based on four indicators, namely climate, soil, vegetation, and topography, was significant; (2) the results of the nine types of zoning based on cropland in the northeast black soil zone showed that intra-zonal zoning was optimal when zoning the northeast black soil zone into six types of zones, which enhanced the variability between the zones and the consistency within the zones; and (3) the assessment of large-scale cropland zoning using the pseudo F-statistic and area-weighted standard deviation methods revealed similarities in their outcomes. The results provide a scientific basis for the subregional protection of arable land in the black soil zone and help to formulate effective policies for different regions.

Suggested Citation

  • Yong Li & Liping Wang & Yunfei Yu & Deqiang Zang & Xilong Dai & Shufeng Zheng, 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China," Sustainability, MDPI, vol. 16(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3341-:d:1376800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    2. Lingda Zhang & Quanhua Hou & Yaqiong Duan & Wenqian Liu, 2023. "Spatial Correlation between Water Resources and Rural Settlements in the Yanhe Watershed Based on Bivariate Spatial Autocorrelation Methods," Land, MDPI, vol. 12(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    2. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    3. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    4. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    5. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    6. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    7. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    8. Haizhen Su & Fenggui Liu & Haifeng Zhang & Xiaofan Ma & Ailing Sun, 2024. "Progress and Prospects of Non-Grain Production of Cultivated Land in China," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    9. Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    10. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    11. Yaya Jin & Jiahe Ding & Yue Chen & Chaozheng Zhang & Xianhui Hou & Qianqian Zhang & Qiankun Liu, 2023. "Urban Land Expansion Simulation Considering the Increasing versus Decreasing Balance Policy: A Case Study in Fenghua, China," Land, MDPI, vol. 12(12), pages 1-21, November.
    12. Yirui Han & Qinqin Pan & Yuee Cao & Jianhong Zhang & Jiaxuan Yuan & Borui Li & Saiqiang Li & Renfeng Ma & Xu Luo & Longbin Sha & Xiaodong Yang, 2022. "Estimation of Grain Crop Yields after Returning the Illegal Nurseries and Orchards to Cultivated Land in the Yangtze River Delta Region," Land, MDPI, vol. 11(11), pages 1-19, November.
    13. Xupeng Zhang & Danling Chen & Xinhai Lu & Yifeng Tang & Bin Jiang, 2021. "Interaction between Land Financing Strategy and the Implementation Deviation of Local Governments’ Cultivated Land Protection Policy in China," Land, MDPI, vol. 10(8), pages 1-16, July.
    14. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    15. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    16. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    17. Shenghao Zhu & Guanyi Yin & Qingzhi Sun & Zhan Zhang & Guanghao Li & Liangfei Gao, 2025. "Structural Changes to China’s Agricultural Business Entities System Under the Perspective of Competitive Evolution," Sustainability, MDPI, vol. 17(7), pages 1-20, March.
    18. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    19. Mengba Liu & Anlu Zhang & Xiong Zhang & Yanfei Xiong, 2022. "Research on the Game Mechanism of Cultivated Land Ecological Compensation Standards Determination: Based on the Empirical Analysis of the Yangtze River Economic Belt, China," Land, MDPI, vol. 11(9), pages 1-29, September.
    20. Guangyuan Cui & Donglin Dong & Qiang Gao, 2023. "A Study on the Spatial Change of Production–Living–Ecology in China in the Past Two Decades Based on Intensity Analysis in the Context of Arable Land Protection and Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3341-:d:1376800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.