IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1156-d1444574.html
   My bibliography  Save this article

Modeling Current and Future Potential Land Distribution Dynamics of Wheat, Rice, and Maize under Climate Change Scenarios Using MaxEnt

Author

Listed:
  • Shahzad Ali

    (College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China)

  • Muhammad Umair

    (School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Tyan Alice Makanda

    (College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Siqi Shi

    (Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands)

  • Shaik Althaf Hussain

    (Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia)

  • Jian Ni

    (College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

Abstract

Accurately predicting changes in the potential distribution of crops resulting from climate change has great significance for adapting to and mitigating the impacts of climate change and ensuring food security. After understanding the spatial and temporal suitability of wheat ( Triticum aestivum ), rice ( Oryza sativa ), and maize ( Zea mays ), as well as the main bioclimatic variables affecting crop growth, we used the MaxEnt model. The accuracy of the MaxEnt was extremely significant, with mean AUC (area under curve) values ranging from 0.876 to 0.916 for all models evaluated. The results showed that for wheat, annual mean temperature (Bio-1) and mean temperature of the coldest quarter (Bio-11) contributed 39.2% and 13.4%, respctively; for rice, precipitation of the warmest quarter (Bio-18) and elevation contributed 34.9% and 19.9%, respectively; and for maize, Bio-1 and precipitation of the driest quarter (Bio-17) contributed 36.3% and 14.3%, respectively. The map drawn indicates that the suitability of wheat, rice, and corn in South Asia may change in the future. Understanding the future distribution of crops can help develop transformative climate change adaptation strategies that consider future crop suitability. The study showed an average significant improvement in high-suitable areas of 8.7%, 30.9%, and 13.1%, for wheat, rice, and maize, respectively; moderate-suitable area increases of 3.9% and 8.6% for wheat and rice, respectively; and a decrease of −8.3% for maize as compared with the current values. The change in the unsuitable areas significantly decreases by −2.5%, −13.5%, and −1.7% for wheat, rice, and maize, respectively, compared to current land suitability. The results of this study are crucial for South Asia as they provide policy-makers with an opportunity to develop appropriate adaptation and mitigation strategies to sustain wheat, rice, and corn production in future climate scenarios.

Suggested Citation

  • Shahzad Ali & Muhammad Umair & Tyan Alice Makanda & Siqi Shi & Shaik Althaf Hussain & Jian Ni, 2024. "Modeling Current and Future Potential Land Distribution Dynamics of Wheat, Rice, and Maize under Climate Change Scenarios Using MaxEnt," Land, MDPI, vol. 13(8), pages 1-26, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1156-:d:1444574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
    3. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    4. Mabhaudhi, T. & Chimonyo, V. G. P. & Hlahla, S. & Massawe, F. & Mayes, S. & Nhamo, Luxon & Modi, A. T., 2019. "Prospects of orphan crops in climate change," Papers published in Journals (Open Access), International Water Management Institute, pages 250(3):695-.
    5. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vimbayi Grace Petrova Chimonyo & Tendai Polite Chibarabada & Dennis Junior Choruma & Richard Kunz & Sue Walker & Festo Massawe & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2022. "Modelling Neglected and Underutilised Crops: A Systematic Review of Progress, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    3. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    4. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    5. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    7. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    8. X. Zhang & Y. Yamaguchi, 2014. "Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2129-2145, December.
    9. Jinsoo Hwang & Hyunjoon Kim, 2019. "Consequences of a green image of drone food delivery services: The moderating role of gender and age," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 872-884, July.
    10. Sussy Munialo & Alexandros Gasparatos & Ndiko Ludidi & Ali Elnaeim Elbasheir Ali & Eden Keyster & Musa Oyebowale Akanbi & Mohammad Naushad Emmambux, 2024. "Systematic Review of the Agro-Ecological, Nutritional, and Medicinal Properties of the Neglected and Underutilized Plant Species Tylosema fassoglense," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    11. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    12. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    14. Marija Knez & Marija Ranic & Mirjana Gurinovic & Maria Glibetic & Jasna Savic & Konstadinos Mattas & Murat Yercan, 2023. "Causes and Conditions for Reduced Cultivation and Consumption of Underutilized Crops: Is There a Solution?," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    15. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    16. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    18. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    19. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    20. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1156-:d:1444574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.