IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1065-d1436168.html
   My bibliography  Save this article

Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas

Author

Listed:
  • Wanqiu Zhang

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology—Beijing, Beijing 100083, China)

  • Zeru Jiang

    (School of Government, Peking University, Beijing 100871, China)

  • Huayang Dai

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology—Beijing, Beijing 100083, China)

  • Gang Lin

    (Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Coupling Processes and Effects of Natural Resource Elements, Ministry of Natural Resources, Beijing 100055, China)

  • Kun Liu

    (Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China)

  • Ruiwen Yan

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology—Beijing, Beijing 100083, China)

  • Yuanhao Zhu

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology—Beijing, Beijing 100083, China)

Abstract

Mining activities have significantly altered the land use patterns of mining areas, exacerbated the degree of landscape fragmentation, and thereby led to the loss of biodiversity. Ecological networks have been recognized as an essential component for enhancing habitat connectivity and protecting biodiversity. However, existing studies lack dynamic analysis at the landscape scale under multiple future scenarios for mining areas, which is adverse to the identification of ecological conservation regions. This study used the MOP-PLUS (multi-objective optimization problem and patch-level land use simulation) model to simulate the land use patterns in the balance of ecology and economy (EEB) scenario and ecological development priority (EDP) scenario for the Shendong coal base. Then, climate change and land use patterns were integrated into ecosystem models to analyze the dynamic changes in the ecological networks. Finally, the conservation priorities were constructed, and dynamic conservation hotspots were identified using landscape mapping methods. The following results were obtained: (1) From 2000 to 2020, large grassland areas were replaced by mining areas, while cultivated land was replenished. By 2030, the forest and grassland areas (967.00 km 2 , 8989.70 km 2 ) will reach their peaks and the coal mine area (356.15 km 2 ) will reach its nadir in the EDP scenario. (2) The fragmentation of ecological sources intensified (MPS decreased from 19.81 km 2 to 18.68 km 2 ) and ecological connectivity declined (in particular, α decreased by 6.58%) from 2000 to 2020. In 2030, the connectivity in the EDP scenario will increase, while the connectivity in the EEB scenario will be close to that of 2020. (3) The central and southeastern parts of the Shendong coal base have higher conservation priorities, which urgently need to be strengthened. This study offers guidance on addressing the challenges of habitat and biodiversity conservation in mining areas.

Suggested Citation

  • Wanqiu Zhang & Zeru Jiang & Huayang Dai & Gang Lin & Kun Liu & Ruiwen Yan & Yuanhao Zhu, 2024. "Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas," Land, MDPI, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1065-:d:1436168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    2. Shuang Song & Dawei Xu & Shanshan Hu & Mengxi Shi, 2021. "Ecological Network Optimization in Urban Central District Based on Complex Network Theory: A Case Study with the Urban Central District of Harbin," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    3. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    2. Qiaoyin Zhang & Yan Wu & Zhiqiang Zhao, 2024. "Identification of Harbin Ecological Function Degradation Areas Based on Ecological Importance Assessment and Ecological Sensitivity," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    3. Zheng Zang & Qilong Ren & Yuqing Zhang, 2022. "Analysis of the Spatial Adaptability of Gross Ecosystem Production, Gross Domestic Production, and Population Density in Chinese Mainland," Land, MDPI, vol. 11(8), pages 1-14, August.
    4. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Gao, Jing & Gong, Jian & Li, Yao & Yang, Jianxin & Liang, Xun, 2024. "Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis," Land Use Policy, Elsevier, vol. 139(C).
    6. Xiaohong Li & Jiuhong Zhang & Jinxia Huang & Wenhao Lin & Shengjun Wu & Maohua Ma, 2022. "To Preserve Green Buffer under Polarization and Diffusion Effects of a Fast-Developing Megalopolis," Land, MDPI, vol. 11(5), pages 1-20, May.
    7. Xu, Aokang & Hu, Mengjun & Shi, Jing & Bai, Qingzhu & Li, Xuehong, 2024. "Construction and optimization of ecological network in inland river basin based on circuit theory, complex network and ecological sensitivity: A case study of Gansu section of Heihe River Basin," Ecological Modelling, Elsevier, vol. 488(C).
    8. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    9. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    10. Huiying Li & Dianfeng Liu & Jianhua He, 2022. "Exploring Differentiated Conservation Priorities of Urban Green Space Based on Tradeoffs of Ecological Functions," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    11. Qiang Yang & Juncheng Fan & Jie Min & Jiaming Na & Pengling Wang & Xinyuan Wang & Ruichun Chang & Quanfeng Wang, 2023. "Assessment of Human Settlement Quality Based on the Population Exposure Risk to PM 2.5 Pollution in the Mid-Spine Belt of Beautiful China," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    12. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.
    13. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    14. Jingeng Huo & Zhenqin Shi & Wenbo Zhu & Xin Chen & Hua Xue & Ran Ma & Yanhui Yan, 2022. "Delineation of the Development Boundary of the Central District of Zhengzhou, China," Land, MDPI, vol. 11(9), pages 1-18, August.
    15. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    16. Ackerschott, Adriana & Kohlhase, Esther & Vollmer, Anita & Hörisch, Jacob & von Wehrden, Henrik, 2023. "Steering of land use in the context of sustainable development: A systematic review of economic instruments," Land Use Policy, Elsevier, vol. 129(C).
    17. Jingheng Wang & Yecui Hu & Rong Song & Wei Wang, 2022. "Research on the Optimal Allocation of Ecological Land from the Perspective of Human Needs—Taking Hechi City, Guangxi as an Example," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    18. Shuo Yang & Hao Su, 2022. "Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration, China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    19. Jiwei Li & Qingqing Ye & Weiqiang Chen & Xuesong Kong & Qingsheng Bi & Jie Lu & Enxiang Cai & Hejie Wei & Xinwei Feng & Yulong Guo, 2022. "An Analysis Method of Quantitative Coupling Rationality between Urban–Rural Construction Land and Population: A Case Study of Henan Province in China," Land, MDPI, vol. 11(5), pages 1-18, May.
    20. Liu, Jianxiao & Wen, Chaoxiang & Liu, Zhewei & Yu, Yue, 2024. "From isolation to linkage: Holistic insights into ecological risk induced by land use change," Land Use Policy, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1065-:d:1436168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.