IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i3p284-d1345442.html
   My bibliography  Save this article

How Does Land Fragmentation Affect Agricultural Technical Efficiency? Based on Mediation Effects Analysis

Author

Listed:
  • Chunfang Zhou

    (School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China)

  • Yuluan Zhao

    (School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China)

  • Mingshun Long

    (School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China)

  • Xiubin Li

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The scientific revelation of the mechanism underlying land fragmentation’s influence on agricultural technical efficiency is extremely important. This study utilized survey data from 305 villages across 12 provinces in Southern China in 2020 to assess technical efficiency through the application of the stochastic frontier production function. Moreover, we investigated the direct impact of land fragmentation on technical efficiency and the indirect impact transmitted through crop diversification and part-time farming by employing Tobit and mediating effect models, respectively. The key findings are as follows: (1) The sampled farmers, on average, operated 0.614 hectares of land with 17.395 plots, and the mean of their technical efficiency was 0.630. (2) The overall effect of land fragmentation on technical efficiency demonstrated a “U”-shaped relationship. (3) Crop diversification and part-time farming were mediating factors in the impact of land fragmentation on technical efficiency. Specifically, an “inverted U”-shaped relationship existed between land fragmentation and crop diversification, whereas a negative linear relationship was observed between land fragmentation and part-time farming. Conversely, crop diversification presented a positive linear relationship with technical efficiency, and part-time farming had an “inverted U”-shaped relationship with technical efficiency. (4) The impact of land fragmentation on technical efficiency varied across altitude zones. It is recommended to control land fragmentation based on local conditions, encourage crop diversification, and strengthen employment guidance and skills training for farmers to ensure the orderly transfer of land.

Suggested Citation

  • Chunfang Zhou & Yuluan Zhao & Mingshun Long & Xiubin Li, 2024. "How Does Land Fragmentation Affect Agricultural Technical Efficiency? Based on Mediation Effects Analysis," Land, MDPI, vol. 13(3), pages 1-19, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:284-:d:1345442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/3/284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/3/284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaobing & Yamauchi, Futoshi & Huang, Jikun & Rozelle, Scott, 2020. "What constrains mechanization in Chinese agriculture? Role of farm size and fragmentation," China Economic Review, Elsevier, vol. 62(C).
    2. Chaozheng Zhang & Danling Chen, 2021. "Fragmentation Reduction through Farmer-Led Land Transfer and Consolidation? Experiences of Rice Farmers in Wuhan Metropolitan Area, China," Agriculture, MDPI, vol. 11(7), pages 1-14, July.
    3. Lili Jia & Martin Petrick, 2014. "How does land fragmentation affect off-farm labor supply: panel data evidence from China," Agricultural Economics, International Association of Agricultural Economists, vol. 45(3), pages 369-380, May.
    4. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    5. Ciaian, Pavel & Rajcaniova, Miroslava & Guri, Fatmir & Zhllima, Edvin & Shahu, Edmira, 2018. "The impact of crop rotation and land fragmentation on farm productivity in Albania," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 120(3), December.
    6. Mehrabi, Zia & Delzeit, Ruth & Ignaciuk, Adriana & Levers, Christian & Braich, Ginni & Bajaj, Kushank & Amo-Aidoo, Araba & Anderson, Weston & Balgah, Roland A. & Benton, Tim G. & Chari, Martin M. & El, 2022. "Research priorities for global food security under extreme events," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(7), pages 756-766.
    7. Looga, J. & Jürgenson, E. & Sikk, K. & Matveev, E. & Maasikamäe, S., 2018. "Land fragmentation and other determinants of agricultural farm productivity: The case of Estonia," Land Use Policy, Elsevier, vol. 79(C), pages 285-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianhui Hu & Xiaxia Lin & Gaohui Wen & Yi Zhou & Hao Zhou & Siqi Lin & Dongyang Yue, 2024. "The Impact of Cultivated Land Fragmentation on Farmers’ Ecological Efficiency of Cultivated Land Use Based on the Moderating and Mediating Effects of the Cultivated Land Management Scale," Land, MDPI, vol. 13(10), pages 1-16, October.
    2. Shukun Wang & Dengwang Li & Tingting Li & Changquan Liu, 2021. "Land Use Transitions and Farm Performance in China: A Perspective of Land Fragmentation," Land, MDPI, vol. 10(8), pages 1-22, July.
    3. Nguyen-Anh, Tuan & Hoang-Duc, Chinh & Tiet, Tuyen & Nguyen-Van, Phu & To-The, Nguyen, 2022. "Composite effects of human, natural and social capitals on sustainable food-crop farming in Sub-Saharan Africa," Food Policy, Elsevier, vol. 113(C).
    4. Pierre Damien Ntihinyurwa & Walter Timo de Vries, 2021. "Farmland Fragmentation, Farmland Consolidation and Food Security: Relationships, Research Lapses and Future Perspectives," Land, MDPI, vol. 10(2), pages 1-39, January.
    5. Ke Feng & Haoran Gao & Liping Qu & Jian Gong, 2024. "Analysis of the Spatial-Temporal Characteristics and Driving Factors of Cultivated Land Fragmentation Under the Expansion of Urban and Rural Construction Land: A Case Study of Ezhou City," Land, MDPI, vol. 13(11), pages 1-24, November.
    6. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    7. Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
    8. Selorm Yaotse Dorvlo & Elizabeth Mkandawire & Katy Roelich & Charles Blessings Jumbe, 2023. "Pathways and Interactions for Integrating Mechanisation into Sustainable Agricultural Production: The Case of Rice Production in Asutsuare, Ghana," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    9. Bachewe, Fantu Nisrane & Koru, Bethlehem & Taffesse, Alemayehu Seyoum, 2018. "Productivity and efficiency in high-potential areas," IFPRI book chapters, in: The economics of teff: Exploring Ethiopia’s biggest cash crop, chapter 7, pages 149-180, International Food Policy Research Institute (IFPRI).
    10. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yen H. T. Nguyen & Tuyen Q. Tran & Dung T. Hoang & Thu M. T. Tran & Trung T. Nguyen, 2023. "Land quality, income, and poverty among rural households in the North Central Region, Vietnam," Poverty & Public Policy, John Wiley & Sons, vol. 15(2), pages 150-172, June.
    12. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    13. Muhammad Rizwan & Ping Qing & Abdul Saboor & Muhammad Amjed Iqbal & Adnan Nazir, 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    14. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    15. Chen, Xuan & Vuong, Nguyen, 2018. "Climate and Off-farm Labor Supply of Agricultural Households: Evidence from Rural Vietnam," 2018 Annual Meeting, August 5-7, Washington, D.C. 274187, Agricultural and Applied Economics Association.
    16. Concetta Cardillo & Orlando Cimino & Marcello De Rosa & Martina Francescone, 2023. "The Evolution of Multifunctional Agriculture in Italy," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    17. Barati, Ali Akbar & Azadi, Hossein & Scheffran, Jürgen, 2021. "Agricultural land fragmentation in Iran: Application of game theory," Land Use Policy, Elsevier, vol. 100(C).
    18. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    20. Yuanying Chi & Wenbing Zhou & Zhenyu Wang & Yu Hu & Xiao Han, 2021. "The Influence Paths of Agricultural Mechanization on Green Agricultural Development," Sustainability, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:3:p:284-:d:1345442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.