IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p197-d1334478.html
   My bibliography  Save this article

Aeolian Sand Sorting and Soil Moisture in Arid Namibian Fairy Circles

Author

Listed:
  • Hezi Yizhaq

    (Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben Gurion University of the Negev, Beersheba 8499000, Israel)

  • Constantin Rein

    (Institute for Theoretical Physics, Leipzig University, Brüderstr. 16, 04103 Leipzig, Germany)

  • Lior Saban

    (Department of Environmental, Geoinformatics, and Urban Planning Sciences, Ben Gurion University of the Negev, Beersheba 8410501, Israel)

  • Noa Cohen

    (Department of Environmental, Geoinformatics, and Urban Planning Sciences, Ben Gurion University of the Negev, Beersheba 8410501, Israel)

  • Klaus Kroy

    (Institute for Theoretical Physics, Leipzig University, Brüderstr. 16, 04103 Leipzig, Germany)

  • Itzhak Katra

    (Department of Environmental, Geoinformatics, and Urban Planning Sciences, Ben Gurion University of the Negev, Beersheba 8410501, Israel)

Abstract

We studied fairy circles 20 km west of Sesriem at one of the driest locations of fairy circles in Namibia, at the foot of the popular Sossusvlei dunes. These fairy circles lack the typical hexagonal order of the Namibian fairy circles. After years of drought, their pattern is more similar to that of vegetation rings, due to the sparse vegetation in the area between the circles. Cross-section measurements of the soil water content (SWC) show that the upper layer (12 cm) is very dry (~1%) and much below the wilting point of Stipagrostis ciliata grasses, whereas the deeper soil layer is wetter (4%). The grain size distribution of soil samples taken from inside and outside the fairy circles reveals considerable heterogeneity in the size fractions due to aeolian (wind-driven) sand sorting. The bare soil inside the fairy circles contains coarser grains, and the ground surface is covered by sand megaripples. There is a linear trend between the vertical soil moisture gradient and the median grain diameter. Fine particles trapped on the vegetated edges of the fairy circle result in small nebkhas that increase the soil water retention at the surface. The dry and loose coarser topsoil inside the fairy circles may prevent the recolonization of new seedlings with short root lengths inside the fairy circles. Our results highlight the role of aeolian sand transport and deposition in desert vegetation environments and seem to support the notion that fairy circle formation may be affected by the interplay between sand sorting and soil moisture gradients.

Suggested Citation

  • Hezi Yizhaq & Constantin Rein & Lior Saban & Noa Cohen & Klaus Kroy & Itzhak Katra, 2024. "Aeolian Sand Sorting and Soil Moisture in Arid Namibian Fairy Circles," Land, MDPI, vol. 13(2), pages 1-14, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:197-:d:1334478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corina E. Tarnita & Juan A. Bonachela & Efrat Sheffer & Jennifer A. Guyton & Tyler C. Coverdale & Ryan A. Long & Robert M. Pringle, 2017. "A theoretical foundation for multi-scale regular vegetation patterns," Nature, Nature, vol. 541(7637), pages 398-401, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Martinez-Garcia, Ricardo & Cabal, Ciro & Calabrese, Justin M. & Hernández-García, Emilio & Tarnita, Corina E. & López, Cristóbal & Bonachela, Juan A., 2023. "Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Cisternas, Jaime & Escaff, Daniel & Clerc, Marcel G. & Lefever, René & Tlidi, Mustapha, 2020. "Gapped vegetation patterns: Crown/root allometry and snaking bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Vilas, Maria P. & Adams, Matthew P. & Oldham, Carolyn E. & Marti, Clelia L. & Hipsey, Matthew R., 2017. "Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte," Ecological Modelling, Elsevier, vol. 363(C), pages 111-121.
    5. Ehud Meron & Jamie J. R. Bennett & Cristian Fernandez-Oto & Omer Tzuk & Yuval R. Zelnik & Gideon Grafi, 2019. "Continuum Modeling of Discrete Plant Communities: Why Does It Work and Why Is It Advantageous?," Mathematics, MDPI, vol. 7(10), pages 1-22, October.
    6. Roeland C. van de Vijsel & Jim van Belzen & Tjeerd J. Bouma & Daphne van der Wal & Bas W. Borsje & Stijn Temmerman & Loreta Cornacchia & Olivier Gourgue & Johan van de Koppel, 2023. "Vegetation controls on channel network complexity in coastal wetlands," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Liu, Chen & Li, Li & Wang, Zhen & Wang, Ruiwu, 2019. "Pattern transitions in a vegetation system with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 255-262.
    8. Franco, Rebeca & Morales, Marco A. & Rodríguez-Mora, J.Isrrael & Agustín-Serrano, Ricardo, 2024. "A new reaction-diffusion-advection model with long-range inhibition for vegetation-desertification pattern-formation as a unified approach," Ecological Modelling, Elsevier, vol. 492(C).
    9. Liang, Juan & Liu, Chen & Sun, Gui-Quan & Li, Li & Zhang, Lai & Hou, Meiting & Wang, Hao & Wang, Zhen, 2022. "Nonlocal interactions between vegetation induce spatial patterning," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:197-:d:1334478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.