IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p987-d277633.html
   My bibliography  Save this article

Continuum Modeling of Discrete Plant Communities: Why Does It Work and Why Is It Advantageous?

Author

Listed:
  • Ehud Meron

    (Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
    Department of Physics, Ben-Gurion University, Beer Sheva 84105, Israel)

  • Jamie J. R. Bennett

    (Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel)

  • Cristian Fernandez-Oto

    (Complex Systems Group, Facultad de Ingenieria y Ciencias Aplicadas, Universidad de los Andes, Av. Mon. Alvaro del Portillo 12.455, Santiago 7620086, Chile)

  • Omer Tzuk

    (Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel)

  • Yuval R. Zelnik

    (Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France)

  • Gideon Grafi

    (French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel)

Abstract

Understanding ecosystem response to drier climates calls for modeling the dynamics of dryland plant populations, which are crucial determinants of ecosystem function, as they constitute the basal level of whole food webs. Two modeling approaches are widely used in population dynamics, individual (agent)-based models and continuum partial-differential-equation (PDE) models. The latter are advantageous in lending themselves to powerful methodologies of mathematical analysis, but the question of whether they are suitable to describe small discrete plant populations, as is often found in dryland ecosystems, has remained largely unaddressed. In this paper, we first draw attention to two aspects of plants that distinguish them from most other organisms—high phenotypic plasticity and dispersal of stress-tolerant seeds—and argue in favor of PDE modeling, where the state variables that describe population sizes are not discrete number densities, but rather continuous biomass densities. We then discuss a few examples that demonstrate the utility of PDE models in providing deep insights into landscape-scale behaviors, such as the onset of pattern forming instabilities, multiplicity of stable ecosystem states, regular and irregular, and the possible roles of front instabilities in reversing desertification. We briefly mention a few additional examples, and conclude by outlining the nature of the information we should and should not expect to gain from PDE model studies.

Suggested Citation

  • Ehud Meron & Jamie J. R. Bennett & Cristian Fernandez-Oto & Omer Tzuk & Yuval R. Zelnik & Gideon Grafi, 2019. "Continuum Modeling of Discrete Plant Communities: Why Does It Work and Why Is It Advantageous?," Mathematics, MDPI, vol. 7(10), pages 1-22, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:987-:d:277633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Corina E. Tarnita & Juan A. Bonachela & Efrat Sheffer & Jennifer A. Guyton & Tyler C. Coverdale & Ryan A. Long & Robert M. Pringle, 2017. "A theoretical foundation for multi-scale regular vegetation patterns," Nature, Nature, vol. 541(7637), pages 398-401, January.
    3. Yizhaq, Hezi & Gilad, Erez & Meron, Ehud, 2005. "Banded vegetation: biological productivity and resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 139-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    3. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    5. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    6. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    7. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    8. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    9. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    10. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    11. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    12. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    13. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    14. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    16. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.
    17. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    18. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    20. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:987-:d:277633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.