IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v363y2017icp111-121.html
   My bibliography  Save this article

Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte

Author

Listed:
  • Vilas, Maria P.
  • Adams, Matthew P.
  • Oldham, Carolyn E.
  • Marti, Clelia L.
  • Hipsey, Matthew R.

Abstract

Submerged macrophytes can colonize shallow lakes via several reproductive mechanisms, and can in turn substantially alter these environments by modifying the thermal structure and dissolved oxygen levels within these lakes. Although multiple mechanisms of submerged macrophyte expansion have been described, the relative contribution of each of these in shallow lake environments has been largely overlooked. In this study we analyzed the spatial spread and patterning during seasonal growth of a globally invasive submerged macrophyte, Potamogeton crispus, in a shallow urban lake (Lake Monger, Western Australia). We used underwater and aerial imagery to estimate the spatial pattern of the P. crispus bed. By comparing the spatial extent of the bed at different times during the growing season, we found linear expansion rates two orders of magnitude higher than those previously estimated through rhizome elongation. We formulated a deterministic mathematical model that accounted for the ability of P. crispus to spread through rhizomes and fragments broken off by the feeding activities of aquatic birds, to assess the contribution of fragment dispersal to the emergent patterns of the submerged macrophyte bed. In addition to accounting for dispersal from fragments, the model also accounted for a hypothesized feedback between macrophyte-induced thermal stratification and central dieback. Comparison of our model results against field data indicated that the model accurately represented the spatial spread of the macrophyte bed when fragment dispersal was included. When fragment dispersal was not included in the model, the spatial spread of the bed was largely underestimated, suggesting that fragment dispersal may well account for the fast seasonal spread of this species. The model also captured the formation of a ring-shaped pattern in spatial macrophyte distribution suggesting that both fragment dispersal and the feedback between stratification and dieback are necessary to reproduce the spatial structure of the macrophyte bed. Our results highlight the potential important role of fragment dispersal in facilitating colonization and submerged macrophyte invasion in shallow lakes.

Suggested Citation

  • Vilas, Maria P. & Adams, Matthew P. & Oldham, Carolyn E. & Marti, Clelia L. & Hipsey, Matthew R., 2017. "Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte," Ecological Modelling, Elsevier, vol. 363(C), pages 111-121.
  • Handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:111-121
    DOI: 10.1016/j.ecolmodel.2017.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017303940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corina E. Tarnita & Juan A. Bonachela & Efrat Sheffer & Jennifer A. Guyton & Tyler C. Coverdale & Ryan A. Long & Robert M. Pringle, 2017. "A theoretical foundation for multi-scale regular vegetation patterns," Nature, Nature, vol. 541(7637), pages 398-401, January.
    2. Boerema, Annelies & Schoelynck, Jonas & Bal, Kris & Vrebos, Dirk & Jacobs, Sander & Staes, Jan & Meire, Patrick, 2014. "Economic valuation of ecosystem services, a case study for aquatic vegetation removal in the Nete catchment (Belgium)," Ecosystem Services, Elsevier, vol. 7(C), pages 46-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Marbuah & Ing-Marie Gren & Kristina Tattersdill & Brendan G. McKie, 2019. "Management of an Aquatic Invasive Weed with Uncertain Benefits and Damage Costs: The Case of Elodea Canadensis in Sweden," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.
    3. Martinez-Garcia, Ricardo & Cabal, Ciro & Calabrese, Justin M. & Hernández-García, Emilio & Tarnita, Corina E. & López, Cristóbal & Bonachela, Juan A., 2023. "Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Cisternas, Jaime & Escaff, Daniel & Clerc, Marcel G. & Lefever, René & Tlidi, Mustapha, 2020. "Gapped vegetation patterns: Crown/root allometry and snaking bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Pamela Kaval & Marjan van den Belt, 2017. "The Organizing Framework of Ecosystem Services and its use in River Management," Working Papers in Economics 17/22, University of Waikato.
    6. Ehud Meron & Jamie J. R. Bennett & Cristian Fernandez-Oto & Omer Tzuk & Yuval R. Zelnik & Gideon Grafi, 2019. "Continuum Modeling of Discrete Plant Communities: Why Does It Work and Why Is It Advantageous?," Mathematics, MDPI, vol. 7(10), pages 1-22, October.
    7. Hezi Yizhaq & Constantin Rein & Lior Saban & Noa Cohen & Klaus Kroy & Itzhak Katra, 2024. "Aeolian Sand Sorting and Soil Moisture in Arid Namibian Fairy Circles," Land, MDPI, vol. 13(2), pages 1-14, February.
    8. Immerzeel, Bart & Vermaat, Jan E. & Juutinen, Artti & Pouta, Eija & Artell, Janne, 2022. "Appreciation of Nordic landscapes and how the bioeconomy might change that: Results from a discrete choice experiment," Land Use Policy, Elsevier, vol. 113(C).
    9. Roeland C. van de Vijsel & Jim van Belzen & Tjeerd J. Bouma & Daphne van der Wal & Bas W. Borsje & Stijn Temmerman & Loreta Cornacchia & Olivier Gourgue & Johan van de Koppel, 2023. "Vegetation controls on channel network complexity in coastal wetlands," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Liu, Chen & Li, Li & Wang, Zhen & Wang, Ruiwu, 2019. "Pattern transitions in a vegetation system with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 255-262.
    11. Czúcz, Bálint & Arany, Ildikó & Potschin-Young, Marion & Bereczki, Krisztina & Kertész, Miklós & Kiss, Márton & Aszalós, Réka & Haines-Young, Roy, 2018. "Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES," Ecosystem Services, Elsevier, vol. 29(PA), pages 145-157.
    12. Franco, Rebeca & Morales, Marco A. & Rodríguez-Mora, J.Isrrael & Agustín-Serrano, Ricardo, 2024. "A new reaction-diffusion-advection model with long-range inhibition for vegetation-desertification pattern-formation as a unified approach," Ecological Modelling, Elsevier, vol. 492(C).
    13. Liang, Juan & Liu, Chen & Sun, Gui-Quan & Li, Li & Zhang, Lai & Hou, Meiting & Wang, Hao & Wang, Zhen, 2022. "Nonlocal interactions between vegetation induce spatial patterning," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:111-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.