IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2172-d1543103.html
   My bibliography  Save this article

Heterogeneous Impacts of Human Activity Intensity on Regional Ecological Security Patterns: The Case of Southwest China

Author

Listed:
  • Tao Li

    (Linze Inland River Basin Research Station, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Ling Li

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Mingfang Tang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Hongbing Deng

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

Intense human activities have significantly altered landscape structure, affected ecosystem services, and threatened ecological security. However, the spatial coupling relationship between regional ecological security patterns (ESPs) and human activity is still unclear. Taking southwest China as the study area, this study firstly assessed ecosystem service importance (ESI) and then identified ecological sources in conjunction with nature reserves. A minimum cumulative resistance model and circuit theory were used to extract ecological corridors and nodes to construct ESPs, and we further analyzed spatial relationships between ESPs and regional human activity intensity factors. Our results showed that ESI had obvious regional differences, and considering diversity and uniqueness of ecosystem functions, it is crucial for constructing ESPs. The ESPs—195 ecological sources, 490 ecological corridors, 212 ecological pinch points, and 17 barrier points—were important priority areas for ecological protection and restoration and will effectively guide differentiated ecosystem management. Intense human activities had significantly differentiated negative impacts on regional ESPs, and balancing regional ecological protection and economic development can achieve a win–win situation. Our research not only provides a new perspective for constructing ESPs but also provides important practical guidance for maintaining ecological security and landscape sustainability.

Suggested Citation

  • Tao Li & Ling Li & Mingfang Tang & Hongbing Deng, 2024. "Heterogeneous Impacts of Human Activity Intensity on Regional Ecological Security Patterns: The Case of Southwest China," Land, MDPI, vol. 13(12), pages 1-16, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2172-:d:1543103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianying Xu & Feifei Fan & Yanxu Liu & Jianquan Dong & Jixing Chen, 2019. "Construction of Ecological Security Patterns in Nature Reserves Based on Ecosystem Services and Circuit Theory: A Case Study in Wenchuan, China," IJERPH, MDPI, vol. 16(17), pages 1-15, September.
    2. Bernardo B. N. Strassburg & Alvaro Iribarrem & Hawthorne L. Beyer & Carlos Leandro Cordeiro & Renato Crouzeilles & Catarina C. Jakovac & André Braga Junqueira & Eduardo Lacerda & Agnieszka E. Latawiec, 2020. "Global priority areas for ecosystem restoration," Nature, Nature, vol. 586(7831), pages 724-729, October.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    4. Huang, Lin & Shao, Quanqin & Liu, Jiyuan & Lu, Qingshui, 2018. "Improving ecological conservation and restoration through payment for ecosystem services in Northeastern Tibetan Plateau, China," Ecosystem Services, Elsevier, vol. 31(PA), pages 181-193.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Pan, Ying & Wu, Junxi & Zhang, Yanjie & Zhang, Xianzhou & Yu, Chengqun, 2021. "Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China," Ecosystem Services, Elsevier, vol. 48(C).
    5. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    6. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    7. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    9. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    10. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Zhang, Jing & Brown, Colin & Qiao, Guanghua & Zhang, Bao, 2019. "Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia," Ecological Economics, Elsevier, vol. 159(C), pages 46-53.
    12. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    14. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    15. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    16. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    17. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    18. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    19. Moses Fayiah & ShiKui Dong & Sphiwe Wezzie Khomera & Syed Aziz Ur Rehman & Mingyue Yang & Jiannan Xiao, 2020. "Status and Challenges of Qinghai–Tibet Plateau’s Grasslands: An Analysis of Causes, Mitigation Measures, and Way Forward," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    20. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2172-:d:1543103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.