IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1881-d1518384.html
   My bibliography  Save this article

Aggregated Housing Price Predictions with No Information About Structural Attributes—Hedonic Models: Linear Regression and a Machine Learning Approach

Author

Listed:
  • Joanna Jaroszewicz

    (Department of Spatial Planning and Environmental Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland)

  • Hubert Horynek

    (Department of Spatial Planning and Environmental Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland)

Abstract

A number of studies have shown that, in hedonic models, the structural attributes of real property have a greater influence on price than external attributes related to location and the immediate neighbourhood. This makes it necessary to include detailed information about structural attributes when predicting prices using regression models and machine learning algorithms and makes it difficult to study the influence of external attributes. In our study of asking prices on the primary residential market in Warsaw (Poland), we used a methodology we developed to determine price indices aggregated to micro-markets, which we further treated as a dependent variable. The analysed database consisted of 10,135 records relating to 2444 residential developments existing as offers on the market at the end of each quarter in the period 2017–2021. Based on these data, aggregated price level indices were determined for 503 micro-markets in which primary market offers were documented. Using the analysed example, we showed that it is possible to predict the value of aggregated price indices based only on aggregated external attributes—location and neighbourhood. Depending on the model, we obtained an R 2 value of 75.8% to 82.9% for the prediction in the set of control observations excluded from building the model.

Suggested Citation

  • Joanna Jaroszewicz & Hubert Horynek, 2024. "Aggregated Housing Price Predictions with No Information About Structural Attributes—Hedonic Models: Linear Regression and a Machine Learning Approach," Land, MDPI, vol. 13(11), pages 1-29, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1881-:d:1518384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    2. Zachary T. Keeler & Heather M. Stephens, 2023. "The capitalization of metro rail access in urban housing markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(3), pages 686-720, May.
    3. Dawid Siwicki, 2021. "The Application of Machine Learning Algorithms for Spatial Analysis: Predicting of Real Estate Prices in Warsaw," Working Papers 2021-05, Faculty of Economic Sciences, University of Warsaw.
    4. Allan Din & Martin Hoesli & Andre Bender, 2001. "Environmental Variables and Real Estate Prices," Urban Studies, Urban Studies Journal Limited, vol. 38(11), pages 1989-2000, October.
    5. Welch, Timothy F. & Gehrke, Steven R. & Wang, Fangru, 2016. "Long-term impact of network access to bike facilities and public transit stations on housing sales prices in Portland, Oregon," Journal of Transport Geography, Elsevier, vol. 54(C), pages 264-272.
    6. Kathrine von Graevenitz & Toke Emil Panduro, 2015. "An Alternative to the Standard Spatial Econometric Approaches in Hedonic House Price Models," Land Economics, University of Wisconsin Press, vol. 91(2), pages 386-409.
    7. Herath, Shanaka & Maier, Gunther, 2010. "The hedonic price method in real estate and housing market research. A review of the literature," SRE-Discussion Papers 2010/03, WU Vienna University of Economics and Business.
    8. Bourassa, Steven C. & Hamelink, Foort & Hoesli, Martin & MacGregor, Bryan D., 1999. "Defining Housing Submarkets," Journal of Housing Economics, Elsevier, vol. 8(2), pages 160-183, June.
    9. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    10. Zhengyi Zhou & Hong Chen & Lu Han & Anming Zhang, 2021. "The Effect of a Subway on House Prices: Evidence from Shanghai," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(S1), pages 199-234, March.
    11. Asad Aziz & Muhammad Mushahid Anwar & Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry, 2023. "Proximity to Neighborhood Services and Property Values in Urban Area: An Evaluation through the Hedonic Pricing Model," Land, MDPI, vol. 12(4), pages 1-12, April.
    12. Ottensmann, John R. & Payton, Seth & Man, Joyce, 2008. "Urban Location and Housing Prices within a Hedonic Model," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 38(1), pages 1-17.
    13. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebelt, Veronika & Bartke, Stephan & Schwarz, Nina, 2018. "Revealing Preferences for Urban Green Spaces: A Scale-sensitive Hedonic Pricing Analysis for the City of Leipzig," Ecological Economics, Elsevier, vol. 146(C), pages 536-548.
    2. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. José-María Montero & Román Mínguez & Gema Fernández-Avilés, 2018. "Housing price prediction: parametric versus semi-parametric spatial hedonic models," Journal of Geographical Systems, Springer, vol. 20(1), pages 27-55, January.
    5. Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
    6. Arnab Bhattacharjee & Eduardo Castro & Taps Maiti & João Marques, 2014. "Endogenous spatial structure and delineation of submarkets: A new framework with application to housing markets," SEEC Discussion Papers 1403, Spatial Economics and Econometrics Centre, Heriot Watt University.
    7. Kopczewska, Katarzyna & Ćwiakowski, Piotr, 2021. "Spatio-temporal stability of housing submarkets. Tracking spatial location of clusters of geographically weighted regression estimates of price determinants," Land Use Policy, Elsevier, vol. 103(C).
    8. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    9. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    10. Chris Leishman & Greg Costello & Steven Rowley & Craig Watkins, 2013. "The Predictive Performance of Multilevel Models of Housing Sub-markets: A Comparative Analysis," Urban Studies, Urban Studies Journal Limited, vol. 50(6), pages 1201-1220, May.
    11. Ekaterina Chernobai & Michael Reibel & Michael Carney, 2011. "Nonlinear Spatial and Temporal Effects of Highway Construction on House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 348-370, April.
    12. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    13. Xiaolong Liu, 2013. "Spatial and Temporal Dependence in House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 47(2), pages 341-369, August.
    14. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    15. Ingrid Nappi‐Choulet Pr. & Tristan‐Pierre Maury, 2009. "A Spatiotemporal Autoregressive Price Index for the Paris Office Property Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 305-340, June.
    16. Monica Palma & Claudia Cappello & Sandra De Iaco & Daniela Pellegrino, 2019. "The residential real estate market in Italy: a spatio-temporal analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2451-2472, September.
    17. Zohrabyan, Tatevik & Leatham, David J. & Bessler, David A., 2008. "Cointegration Analysis of Regional House Prices in U.S," 2007 Agricultural and Rural Finance Markets in Transition, October 4-5, 2007, St. Louis, Missouri 48138, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    18. Wang, Lisha & Miwa, Tomio & Jiang, Meilan & Morikawa, Takayuki, 2021. "Heterogeneous residential distribution changes and spillover effects by railway projects: The case study of Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 145-163.
    19. Bernardo Alves Furtado, 2011. "Neighbourhoods in Urban Economics," Urban Studies, Urban Studies Journal Limited, vol. 48(13), pages 2827-2847, October.
    20. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1881-:d:1518384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.