IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1772-d1508581.html
   My bibliography  Save this article

Exploring the Spatiotemporal Heterogeneities in Urban Vitality Through Scalable Proxies from Mobile Data

Author

Listed:
  • Sunggyun Park

    (Department of Smart Cities, University of Seoul, Seoul 02504, Republic of Korea)

  • Dongwoo Lee

    (Department of Smart Cities, University of Seoul, Seoul 02504, Republic of Korea)

Abstract

Jane Jacob’s concepts of urban vitality and diversity have become prevailing urban planning philosophies in most countries for making cities more livable. Recent changes in demographics and the impacts of COVID-19 have exacerbated the economic and social challenges that cities commonly face, particularly spatiotemporal heterogeneities. Being able to understand these heterogeneities in scalable approaches is fundamental to tackling these challenges in cities. Therefore, this article aims to provide a new form of scalable estimation of urban vitality by using the de facto population. Instead of merely adopting static statistical information such as morphological characteristics in areas, we leverage dynamic factors such as internal mobility flows and energy use intensity as proxies for the spatiotemporal dynamics of indoor and outdoor behaviors of crowds. In this way, we combine dynamic attributes and static features to describe the patterns of urban vitality, which are directly related to spatiotemporal dynamics in urban places. We utilize GNSS-based mobile data and building energy usage intensity as dynamic proxies along with static data such as land use mix and age distribution. To better capture spatial heterogeneity, we use a Multiscale Geographically Weighted Regression (MGWR) model to identify the relationships between the de facto population and the dynamic and static factors. Drawing from the factors determining urban vitality, this article provides policy implications for alleviating spatiotemporal urban imbalances. These data-driven implications can fill the technical knowledge gaps in establishing planning strategies for achieving urban sustainability while enhancing overall subjective livability.

Suggested Citation

  • Sunggyun Park & Dongwoo Lee, 2024. "Exploring the Spatiotemporal Heterogeneities in Urban Vitality Through Scalable Proxies from Mobile Data," Land, MDPI, vol. 13(11), pages 1-22, October.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1772-:d:1508581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delclòs-Alió, Xavier & Miralles-Guasch, Carme, 2018. "Looking at Barcelona through Jane Jacobs’s eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation," Land Use Policy, Elsevier, vol. 75(C), pages 505-517.
    2. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    2. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    3. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    4. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    5. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
    6. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    7. Paköz, Muhammed Ziya & Yaratgan, Dilara & Şahin, Aydan, 2022. "Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey," Land Use Policy, Elsevier, vol. 114(C).
    8. Grace Abou Jaoude & Majd Murad & Olaf Mumm & Vanessa Miriam Carlow, 2024. "Operationalizing the open city concept: A case study of Berlin," Environment and Planning B, , vol. 51(3), pages 721-744, March.
    9. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    10. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    11. Moore, David & Webb, Amanda L., 2022. "Evaluating energy burden at the urban scale: A spatial regression approach in Cincinnati, Ohio," Energy Policy, Elsevier, vol. 160(C).
    12. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    13. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    14. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    15. Yongxin Liu & Yiting Wang & Yiwen Lin & Xiaoqing Ma & Shifa Guo & Qianru Ouyang & Caige Sun, 2023. "Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    16. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    17. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Jinyao Lin & Yaye Zhuang & Yang Zhao & Hua Li & Xiaoyu He & Siyan Lu, 2022. "Measuring the Non-Linear Relationship between Three-Dimensional Built Environment and Urban Vitality Based on a Random Forest Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    19. Rémy Le Boennec & Julie Bulteau & Thierry Feuillet, 2022. "The role of commuter rail accessibility in the formation of residential land values: exploring spatial heterogeneity in peri-urban and remote areas," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(1), pages 163-186, August.
    20. Lu, Haiyan & Zhao, Pengjun & Hu, Haoyu & Zeng, Liangen & Wu, Kai Sheng & Lv, Di, 2022. "Transport infrastructure and urban-rural income disparity: A municipal-level analysis in China," Journal of Transport Geography, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1772-:d:1508581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.