IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1605-d1491685.html
   My bibliography  Save this article

Commuting Pattern Recognition of Industrial Parks Using Mobile Phone Signaling Data: A Case Study of Nanjing, China

Author

Listed:
  • Xinguo Yuan

    (School of Architecture, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Planning and Design Group, Nanjing 210019, China)

  • Xingping Wang

    (School of Architecture, Southeast University, Nanjing 210096, China)

  • Yingyu Wang

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Juan Li

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Yang Zhang

    (School of Architecture, Southeast University, Nanjing 210096, China
    College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Zhan Gao

    (Jiangsu Provincial Planning and Design Group, Nanjing 210019, China)

  • Gai Zhang

    (Jiangsu Provincial Planning and Design Group, Nanjing 210019, China)

Abstract

As a novel industrial space to cope with global competition, industrial parks have gradually become important growth poles to promote regional development and provide a large number of employment opportunities. This study utilizes mobile phone signaling data to identify the commuting origins and destinations (OD) of different industrial parks in Nanjing while comparing the distribution of the working population, residential population, and commuting patterns across varying types and levels of industrial parks. The level of coordination of the employment–residential system in each park is quantified by calculating the resident commuting index (HSC i ), employee commuting index (WSC i ), and their coupling coordination degree. Additionally, geographic detectors are employed to identify the influencing factors and interaction effects that impact the employment–residential balance in industrial parks. Results show that industrial parks located in the central urban area attract more residential and working populations. The commuting volume of national and municipal as well as high-tech industrial parks is higher than other types of industrial parks. Most industrial parks experience more inward than outward commuting, and there is an uneven distribution of commuting flows, resulting in a network-like pattern of “central dense, peripheral sparse”. Various industrial parks exhibit a highly coupled job–housing system, and those with high HSC i tend to have high WSC i as well. The coupling coordination of industrial parks ranged from 0.16 to 0.93, with 13 being primary coordination or above and 3 being disordered. Industrial parks are classified into three types: employment-oriented, residential-oriented, and employment–residential balanced, with the residential-oriented type being predominant. The density of public transportation stops, park area, and land use mix are the primary factors affecting the employment–residential balance. Industrial parks with larger scale, better land allocation, and higher service facility levels are more likely to achieve coordination in the employment–residential system. Our work utilizes mobile signaling data to characterize the commuting patterns of industrial parks, providing insights for industrial park planning and promoting the integration of industry and city.

Suggested Citation

  • Xinguo Yuan & Xingping Wang & Yingyu Wang & Juan Li & Yang Zhang & Zhan Gao & Gai Zhang, 2024. "Commuting Pattern Recognition of Industrial Parks Using Mobile Phone Signaling Data: A Case Study of Nanjing, China," Land, MDPI, vol. 13(10), pages 1-24, October.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1605-:d:1491685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Giuliano, Genevieve, 1991. "Is Jobs-Housing Balance a Transportation Issue?," University of California Transportation Center, Working Papers qt4874r4hg, University of California Transportation Center.
    3. Chris Hamnett, 2003. "Gentrification and the Middle-class Remaking of Inner London, 1961-2001," Urban Studies, Urban Studies Journal Limited, vol. 40(12), pages 2401-2426, November.
    4. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    5. Cervero, Robert, 1989. "Jobs-Housing Balancing and Regional Mobility," University of California Transportation Center, Working Papers qt7mx3k73h, University of California Transportation Center.
    6. Xiping Yang & Zhixiang Fang & Ling Yin & Junyi Li & Yang Zhou & Shiwei Lu, 2018. "Understanding the Spatial Structure of Urban Commuting Using Mobile Phone Location Data: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    7. Wang, Donggen & Cao, Xinyu, 2017. "Impacts of the built environment on activity-travel behavior: Are there differences between public and private housing residents in Hong Kong?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 25-35.
    8. Jinfeng Wang & Guowei Luo & Yanjia Huang & Min Liu & Yi Wei, 2023. "Spatial Characteristics and Influencing Factors of Commuting in Central Urban Areas Using Mobile Phone Data: A Case Study of Nanning," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    9. Michael T. Peddle, 1993. "Planned Industrial and Commercial Developments in the United States: A Review of the History, Literature, and Empirical Evidence Regarding Industrial Parks and Research Parks," Economic Development Quarterly, , vol. 7(1), pages 107-124, February.
    10. Wang, Rong & Tan, Junlan, 2021. "Exploring the coupling and forecasting of financial development, technological innovation, and economic growth," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    3. Zhong-Ren Peng, 1997. "The Jobs-Housing Balance and Urban Commuting," Urban Studies, Urban Studies Journal Limited, vol. 34(8), pages 1215-1235, July.
    4. Tao, Sui & Cheng, Long & He, Sylvia & Witlox, Frank, 2023. "Examining the non-linear effects of transit accessibility on daily trip duration: A focus on the low-income population," Journal of Transport Geography, Elsevier, vol. 109(C).
    5. Islam, Md Rabiul & Saphores, Jean-Daniel M., 2022. "An L.A. story: The impact of housing costs on commuting," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Iacono, Michael & Levinson, David, 2016. "Mutual causality in road network growth and economic development," Transport Policy, Elsevier, vol. 45(C), pages 209-217.
    7. Wang, Donggen & Chai, Yanwei & Li, Fei, 2011. "Built environment diversities and activity–travel behaviour variations in Beijing, China," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1173-1186.
    8. Keone Kelobonye & Feng Mao & Jianhong (Cecilia) Xia & Mohammad Shahidul Hasan Swapan & Gary McCarney, 2019. "The Impact of Employment Self-Sufficiency Measures on Commuting Time: Case Study of Perth, Australia," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    9. Wang, Donggen & Chai, Yanwei, 2009. "The jobs–housing relationship and commuting in Beijing, China: the legacy of Danwei," Journal of Transport Geography, Elsevier, vol. 17(1), pages 30-38.
    10. Mark W. Horner & Bernadette M. Marion, 2009. "A Spatial Dissimilarity-based Index of the Jobs—Housing Balance: Conceptual Framework and Empirical Tests," Urban Studies, Urban Studies Journal Limited, vol. 46(3), pages 499-517, March.
    11. Evelyn Blumenberg & Fariba Siddiq, 2023. "Commute distance and jobs-housing fit," Transportation, Springer, vol. 50(3), pages 869-891, June.
    12. Jiangping, Zhou & Chun, Zhang & Xiaojian, Chen & Wei, Huang & Peng, Yu, 2014. "Has the legacy of Danwei persisted in transformations? the jobs-housing balance and commuting efficiency in Xi’an," Journal of Transport Geography, Elsevier, vol. 40(C), pages 64-76.
    13. Hu, Beibei & Zhang, Shuang & Ding, Yang & Zhang, Min & Dong, Xianlei & Sun, Huijun, 2021. "Research on the coupling degree of regional taxi demand and social development from the perspective of job–housing travels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    14. Michael A. Niedzielski, 2006. "A Spatially Disaggregated Approach to Commuting Efficiency," Urban Studies, Urban Studies Journal Limited, vol. 43(13), pages 2485-2502, December.
    15. Jiangping Zhou & Ying Long, 2016. "Losers and Pareto optimality in optimising commuting patterns," Urban Studies, Urban Studies Journal Limited, vol. 53(12), pages 2511-2529, September.
    16. Mitra, Suman K. & Saphores, Jean-Daniel M., 2019. "Why do they live so far from work? Determinants of long-distance commuting in California," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Haonan Zhang & Hu Zhao & Saisai Meng & Yanghua Zhang, 2022. "Research on the Jobs-Housing Balance of Residents in Peri-Urbanization Areas in China: A Case Study of Zoucheng County," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    18. Harry L. Margulis, 2007. "Commercial Sub-markets in Suburban Cuyahoga County, Ohio," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 249-274, February.
    19. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang & Li, Weifeng, 2022. "Residential-employment mixed use and jobs-housing balance: A case study of Shenzhen, China," Land Use Policy, Elsevier, vol. 119(C).
    20. Qin, Ping & Wang, Lanlan, 2019. "Job opportunities, institutions, and the jobs-housing spatial relationship: Case study of Beijing," Transport Policy, Elsevier, vol. 81(C), pages 331-339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1605-:d:1491685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.