IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1564-d1212075.html
   My bibliography  Save this article

Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China

Author

Listed:
  • Shuaijun Yue

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Guangxing Ji

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Junchang Huang

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Mingyue Cheng

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Yulong Guo

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Weiqiang Chen

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

Abstract

Many studies quantify the impact of climate change and human activities on runoff changes on an annual scale, but few studies have examined this on multiple time scales. This paper quantifies the contribution of different factors to the variability of Jinsha River runoff at multiple time scales (annual, seasonal and monthly). First, the trend analysis of Jinsha River runoff is carried out, and the Mann–Kendall mutation test was then applied to the runoff data for mutation analysis. According to the mutation year, the research period is divided into the base period and the mutation period. By constructing an ABCD hydrological model simulation and monthly scale Budyko model, the contribution rate of human and climate factors to the multitime-scale runoff of Jinsha River is calculated. The results showed that: (1) The sudden year of change in the Jinsha River runoff is 1978, and the Nash coefficients of the ABCD hydrological model in the base period and sudden change period were 0.85 and 0.86, respectively. (2) Climate factors were the dominant factor affecting annual runoff changes (98.62%), while human factors were the secondary factor affecting annual runoff changes (1.38%). (3) The contribution rates of climate factors in spring, summer, autumn, and winter to runoff were 91.68%, 74.08%, 95.30%, and 96.15%, respectively. The contribution rates of human factors in spring, summer, autumn, and winter to runoff were 8.32%, 25.92%, 4.70%, and 3.85%, respectively. (4) The contribution rates of climate factors to runoff in May, June, and July were 95.14%, 102.15%, and 87.79%, respectively. The contribution rates of human factors to runoff in May, June, and July were 4.86%, −2.15%, and 12.21%, respectively.

Suggested Citation

  • Shuaijun Yue & Guangxing Ji & Junchang Huang & Mingyue Cheng & Yulong Guo & Weiqiang Chen, 2023. "Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China," Land, MDPI, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1564-:d:1212075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    2. Guangxing Ji & Junchang Huang & Yulong Guo & Dan Yan, 2022. "Quantitatively Calculating the Contribution of Vegetation Variation to Runoff in the Middle Reaches of Yellow River Using an Adjusted Budyko Formula," Land, MDPI, vol. 11(4), pages 1-12, April.
    3. Guangxing Ji & Leying Wu & Liangdong Wang & Dan Yan & Zhizhu Lai, 2021. "Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis," Land, MDPI, vol. 10(5), pages 1-14, May.
    4. Keyao Zhang & Xu Yuan & Ying Lu & Zipu Guo & Jiahong Wang & Hanmin Luo, 2023. "Quantifying the Impact of Cascade Reservoirs on Streamflow, Drought, and Flood in the Jinsha River Basin," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    5. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    6. Guangxing Ji & Zhizhu Lai & Haibin Xia & Hao Liu & Zheng Wang, 2021. "Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT," Land, MDPI, vol. 10(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofeng Ren & Erwen Xu & C. Ken Smith & Michael Vrahnakis & Wenmao Jing & Weijun Zhao & Rongxin Wang & Xin Jia & Chunming Yan & Ruiming Liu, 2024. "Changes in Surface Runoff and Temporal Dispersion in a Restored Montane Watershed on the Qinghai–Tibetan Plateau," Land, MDPI, vol. 13(5), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangxing Ji & Leying Wu & Liangdong Wang & Dan Yan & Zhizhu Lai, 2021. "Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis," Land, MDPI, vol. 10(5), pages 1-14, May.
    2. Guangxing Ji & Huiyun Song & Hejie Wei & Leying Wu, 2021. "Attribution Analysis of Climate and Anthropic Factors on Runoff and Vegetation Changes in the Source Area of the Yangtze River from 1982 to 2016," Land, MDPI, vol. 10(6), pages 1-13, June.
    3. Shuaijun Yue & Junchang Huang & Yali Zhang & Weiqiang Chen & Yulong Guo & Mingyue Cheng & Guangxing Ji, 2023. "Quantitative Evaluation of the Impact of Vegetation Restoration and Climate Variation on Runoff Attenuation in the Luan River Basin Based on the Extended Budyko Model," Land, MDPI, vol. 12(8), pages 1-14, August.
    4. Nekruz Gulahmadov & Yaning Chen & Aminjon Gulakhmadov & Moldir Rakhimova & Manuchekhr Gulakhmadov, 2021. "Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia," Land, MDPI, vol. 10(5), pages 1-29, May.
    5. Xiang Li & Dongqin Yin & Xuejun Zhang & Barry F.W. Croke & Danhong Guo & Jiahong Liu & Anthony J. Jakeman & Ruirui Zhu & Li Zhang & Xiangpeng Mu & Fengran Xu & Qian Wang, 2019. "Mapping the Distribution of Water Resource Security in the Beijing-Tianjin-Hebei Region at the County Level under a Changing Context," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    6. ChaoJun Gu & Yongqing Zhu & Renhua Li & He Yao & Xingmin Mu, 2021. "Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 545-566, October.
    7. Mengru Wei & Zhe Yuan & Jijun Xu & Mengqi Shi & Xin Wen, 2022. "Attribution Assessment and Prediction of Runoff Change in the Han River Basin, China," IJERPH, MDPI, vol. 19(4), pages 1-22, February.
    8. Qingqing Li & Yanping Cao & Shuling Miao & Xinhe Huang, 2022. "Spatiotemporal Characteristics of Drought and Wet Events and Their Impacts on Agriculture in the Yellow River Basin," Land, MDPI, vol. 11(4), pages 1-20, April.
    9. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    10. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    11. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    12. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    13. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    14. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    15. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    16. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    17. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    18. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    19. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1564-:d:1212075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.