IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p968-d1133660.html
   My bibliography  Save this article

Towards Carbon-Neutral Cities: Urban Classification Based on Physical Environment and Carbon Emission Characteristics

Author

Listed:
  • Jiah Lee

    (Department of Building Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Republic of Korea)

  • Seunghyun Jung

    (Department of Building Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Republic of Korea)

Abstract

Cities are highly industrialized and populated areas and major sources of greenhouse gas emissions. For carbon neutrality, examining the correlation between urban characteristics and greenhouse gas emissions is necessary. This study aimed to analyze the characteristics of each city from a carbon neutrality perspective. As such, we conducted a carbon-neutral city analysis. First, the physical environmental variables of 250 municipal, county, and district local governments were collected and constructed and then reduced and purified through factor analysis. Second, the type was derived by performing cluster analysis on the reduced factor variables and carbon emissions by analysis unit. Finally, the characteristics of each type were analyzed, and the carbon-neutral city planning and applicable carbon-neutral technology fields were proposed according to the characteristics. After the categorization of carbon-neutral cities throughout Korea, six cluster types were derived; cities in each cluster had similar characteristics. This study suggests that solutions for carbon reduction should be applied by comprehensively considering the social, economic, and environmental characteristics of each city. It concludes that regional physical environmental indicators and energy consumption statistics can be used comprehensively to establish effective policies and apply technologies and techniques at the local government level.

Suggested Citation

  • Jiah Lee & Seunghyun Jung, 2023. "Towards Carbon-Neutral Cities: Urban Classification Based on Physical Environment and Carbon Emission Characteristics," Land, MDPI, vol. 12(5), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:968-:d:1133660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crane, Randall, 1998. "Travel By Design?," University of California Transportation Center, Working Papers qt3pc4v6jj, University of California Transportation Center.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Crane, Randall & Crepeau, Richard, 1998. "Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data," University of California Transportation Center, Working Papers qt4pj4s7t8, University of California Transportation Center.
    4. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanzhe Cui & Yingnan Niu & Yawen Ren & Shiyi Zhang & Lindan Zhao, 2024. "A Model to Analyze Industrial Clusters to Measure Land Use Efficiency in China," Land, MDPI, vol. 13(7), pages 1-22, July.
    2. Liu, Yajun & Zhang, Xiuwu & Shen, Yang, 2024. "Technology-driven carbon reduction: Analyzing the impact of digital technology on China's carbon emission and its mechanism," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Jiyong Park & Seunghyun Jung, 2024. "Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea," Sustainability, MDPI, vol. 16(5), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    2. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    3. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    4. Chakrabarti, Sandip, 2017. "How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles," Transport Policy, Elsevier, vol. 54(C), pages 80-89.
    5. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    6. Louis Merlin, 2015. "Can the built environment influence nonwork activity participation? An analysis with national data," Transportation, Springer, vol. 42(2), pages 369-387, March.
    7. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    8. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    9. Huang, Xiaoyan & (Jason) Cao, Xinyu & Yin, Jiangbin & Cao, Xiaoshu, 2019. "Can metro transit reduce driving? Evidence from Xi'an, China," Transport Policy, Elsevier, vol. 81(C), pages 350-359.
    10. Lee, Yongsung & Guhathakurta, Subhrajit, 2018. "An analysis of the effects of suburban densification on vehicle use for shopping: Do existing residents respond to land-use changes in the same way as recent movers?," Journal of Transport Geography, Elsevier, vol. 68(C), pages 193-204.
    11. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    12. Su, Qing & Zhou, Liren, 2012. "Parking management, financial subsidies to alternatives to drive alone and commute mode choices in Seattle," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 88-97.
    13. Khordagui, Nagwa, 2019. "Parking prices and the decision to drive to work: Evidence from California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 479-495.
    14. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    15. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    16. Javier Asensio, 2002. "Transport Mode Choice by Commuters to Barcelona's CBD," Urban Studies, Urban Studies Journal Limited, vol. 39(10), pages 1881-1895, September.
    17. Sumeeta Srinivasan, 2002. "Quantifying Spatial Characteristics of Cities," Urban Studies, Urban Studies Journal Limited, vol. 39(11), pages 2005-2028, October.
    18. Benjamin R Sperry & Mark W Burris & Eric Dumbaugh, 2012. "A Case Study of Induced Trips at Mixed-Use Developments," Environment and Planning B, , vol. 39(4), pages 698-712, August.
    19. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    20. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:968-:d:1133660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.