IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1063-d1146076.html
   My bibliography  Save this article

Intensity Analysis for Urban Land Use/Land Cover Dynamics Characterization of Ouagadougou and Bobo-Dioulasso in Burkina Faso

Author

Listed:
  • Valentin Ouedraogo

    (West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Doctoral Research Programme on Climate Change and Human Habitat, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria)

  • Kwame Oppong Hackman

    (West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Competence Centre, Ouagadougou 06 BP 9507, Burkina Faso)

  • Michael Thiel

    (Department of Remote Sensing, Institute of Geography and Geology, Julius-Maximilians-University of Würzburg, Oswald-Külpe-Weg 86, 97074 Würzburg, Germany)

  • Jaiye Dukiya

    (Department of Urban and Regional Planning, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria)

Abstract

Ouagadougou and Bobo-Dioulasso remain the two major urban centers in Burkina Faso with an increasing trend in human footprint. The research aimed at analyzing the Land Use/Land Cover (LULC) dynamics in the two cities between 2003 and 2021 using intensity analysis, which decomposes LULC changes into interval, category and transition levels. The satellite data used for this research were composed of surface reflectance imagery from Landsat 5, Landsat 7 and Landsat 8 acquired from the Google Earth Engine Data Catalogue. The Random Forest, Support Vector Machine and Gradient Tree Boost algorithms were employed to run supervised image classifications for four selected years including 2003, 2009, 2015 and 2021. The results showed that the landscape is changing in both cities due to rapid urbanization. Ouagadougou experienced more rapid changes than Bobo-Dioulasso, with a maximum annual change intensity of 3.61% recorded between 2015 and 2021 against 2.22% in Bobo-Dioulasso for the period 2009–2015. The transition of change was mainly towards built-up areas, which gain targeted bare and agricultural lands in both cities. This situation has led to a 78.12% increase of built-up surfaces in Ouagadougou, while 42.24% of agricultural land area was lost. However, in Bobo-Dioulasso, the built class has increased far more by 140.67%, and the agricultural land areas experienced a gain of 1.38% compared with the 2003 baseline. The study demonstrates that the human footprint is increasing in both cities making the inhabitants vulnerable to environmental threats such as flooding and the effect of an Urban Heat Island, which is information that could serve as guide for sustainable urban land use planning.

Suggested Citation

  • Valentin Ouedraogo & Kwame Oppong Hackman & Michael Thiel & Jaiye Dukiya, 2023. "Intensity Analysis for Urban Land Use/Land Cover Dynamics Characterization of Ouagadougou and Bobo-Dioulasso in Burkina Faso," Land, MDPI, vol. 12(5), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1063-:d:1146076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Kourosh Niya & Jinliang Huang & Hazhir Karimi & Hamidreza Keshtkar & Babak Naimi, 2019. "Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    2. Robert Gilmore Pontius & Yan Gao & Nicholas M. Giner & Takashi Kohyama & Mitsuru Osaki & Kazuyo Hirose, 2013. "Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia," Land, MDPI, vol. 2(3), pages 1-19, July.
    3. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    4. Fernando Oñate-Valdivieso & Arianna Oñate-Paladines & Milton Collaguazo, 2022. "Spatiotemporal Dynamics of Soil Impermeability and Its Impact on the Hydrology of An Urban Basin," Land, MDPI, vol. 11(2), pages 1-17, February.
    5. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyamekye, Clement & Kwofie, Samuel & Ghansah, Benjamin & Agyapong, Emmanuel & Boamah, Linda Appiah, 2020. "Assessing urban growth in Ghana using machine learning and intensity analysis: A case study of the New Juaben Municipality," Land Use Policy, Elsevier, vol. 99(C).
    2. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    3. Dadirai Matarira & Onisimo Mutanga & Maheshvari Naidu & Terence Darlington Mushore & Marco Vizzari, 2023. "Characterizing Informal Settlement Dynamics Using Google Earth Engine and Intensity Analysis in Durban Metropolitan Area, South Africa: Linking Pattern to Process," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    4. Xiaofang Sun & Guicai Li & Junbang Wang & Meng Wang, 2021. "Quantifying the Land Use and Land Cover Changes in the Yellow River Basin while Accounting for Data Errors Based on GlobeLand30 Maps," Land, MDPI, vol. 10(1), pages 1-18, January.
    5. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    6. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    7. Alina Kulczyk-Dynowska & Agnieszka Stacherzak, 2022. "The Impact of a City on Its Environment: The Prism of Demography and Selected Environmental and Technical Aspects Based on the Case of Major Lower Silesian Cities," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    8. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    9. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    10. Sri Murniani Angelina Letsoin & David Herak & Fajar Rahmawan & Ratna Chrismiari Purwestri, 2020. "Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    11. Dinkelman, Taryn & Schulhofer-Wohl, Sam, 2015. "Migration, congestion externalities, and the evaluation of spatial investments," Journal of Development Economics, Elsevier, vol. 114(C), pages 189-202.
    12. Mari-Isabella Stan, 2022. "The impact of the pandemic crisis on employment in the context of urbanization," Technium Social Sciences Journal, Technium Science, vol. 33(1), pages 492-505, July.
    13. Zhen Yang & Jun Lei & Jian-Gang Li, 2019. "Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    14. Xiaofang Sun & Chao Yu & Junbang Wang & Meng Wang, 2020. "The Intensity Analysis of Production Living Ecological Land in Shandong Province, China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    15. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    16. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    17. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    18. Ulep, Valerie Gilbert T. & Ortiz, Danica Aisa P. & Go, John Juliard & Duante, Charmaine & Gonzales, Rosa C. & Mendoza, Laurita R. & Reyes, Clarissa & Elgo, Frances Rose & Aldeon, Melanie P., 2012. "Inequities in Noncommunicable Diseases," Discussion Papers DP 2012-04, Philippine Institute for Development Studies.
    19. Rudke, Anderson Paulo & Martins, Jorge Alberto & dos Santos, Alex Mota & Silva, Witan Pereira & Caldana, Nathan F. da Silva & Souza, Vinicius A.S. & Alves, Ronaldo Adriano & de Almeida Albuquerque, Ta, 2021. "Spatial and socio-economic analysis of public transport systems in large cities: A case study for Belo Horizonte, Brazil," Journal of Transport Geography, Elsevier, vol. 91(C).
    20. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1063-:d:1146076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.