IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1009-d1139159.html
   My bibliography  Save this article

Estimating Advance of Built-Up Area in Desert-Oasis Ecotone of Cholistan Desert Using Landsat

Author

Listed:
  • Sami Ullah

    (School of Geo-Sciences and Info-Physics, Central South University, Changsha 410012, China)

  • Yan Shi

    (School of Geo-Sciences and Info-Physics, Central South University, Changsha 410012, China)

  • Muhammad Yousaf Sardar Dasti

    (School of Geo-Sciences and Info-Physics, Central South University, Changsha 410012, China)

  • Muhammad Wajid

    (School of Geo-Sciences and Info-Physics, Central South University, Changsha 410012, China)

  • Zulfiqar Ahmad Saqib

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
    Agricultural Remote Sensing Lab, National Centre for GIS and Space Applications (NCGSA), Islamabad 44000, Pakistan)

Abstract

There have been few attempts to estimate the effects of land use and land cover (LULC) on ecosystem services in desert-oasis ecotones, which are recognized as critical ecological barriers and buffers that prevent deserts from expanding into oases. This research investigated how remote sensing and geographic information technology may be used to monitor changes in LULC in the Cholistan desert and the Bahawalpur region of Pakistan between the years 2015 and 2022. The objective of this research was to identify thematic and statistical shifts in LULC in the study area due to various human interventions in the area. Landsat-8 images were processed using the maximum likelihood supervised classification technique using 500 training samples to categorize the study area into four LULC classes, i.e., desert/barren land, waterbodies, vegetation, and built-up areas, with an overall accuracy of 93% and 98% for 2015 and 2022, respectively. Results indicate a significant expansion in built-up area in 2022, which is up to 43%, agriculture and vegetation area declined by 8%, waterbodies decreased by 41%, and desert area decreased by 2% when compared with 2015. The change detection approach revealed that agricultural land was directly encroached on by rapidly increasing built-up area and urbanization as the area had an overall 19% rise in population growth within eight years with an annual growth rate of more than 3%. This study will be helpful to assess the quantity of spatial and temporal changes in the desert ecosystem, which is usually ignored by policymakers and governments due to less economic activity, although it plays a huge role in biodiversity conservation and balancing the regional ecosystem.

Suggested Citation

  • Sami Ullah & Yan Shi & Muhammad Yousaf Sardar Dasti & Muhammad Wajid & Zulfiqar Ahmad Saqib, 2023. "Estimating Advance of Built-Up Area in Desert-Oasis Ecotone of Cholistan Desert Using Landsat," Land, MDPI, vol. 12(5), pages 1-13, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1009-:d:1139159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdus Samie & Xiangzheng Deng & Siqi Jia & Dongdong Chen, 2017. "Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan," Sustainability, MDPI, vol. 9(8), pages 1-17, July.
    2. Yonaba, R. & Koïta, M. & Mounirou, L.A. & Tazen, F. & Queloz, P. & Biaou, A.C. & Niang, D. & Zouré, C. & Karambiri, H. & Yacouba, H., 2021. "Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso," Land Use Policy, Elsevier, vol. 103(C).
    3. Biswajit Nath & Zheng Niu & Ramesh P. Singh, 2018. "Land Use and Land Cover Changes, and Environment and Risk Evaluation of Dujiangyan City (SW China) Using Remote Sensing and GIS Techniques," Sustainability, MDPI, vol. 10(12), pages 1-32, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. M. Yagoub & Tareefa AlSumaiti & Yacob T. Tesfaldet & Khaled AlArfati & Maythaa Alraeesi & Mariam Eid Alketbi, 2023. "Integration of Analytic Hierarchy Process (AHP) and Remote Sensing to Assess Threats to Preservation of the Oases: Case of Al Ain, UAE," Land, MDPI, vol. 12(7), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    3. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    4. Jun Wang & Zhihua Wang & Hongbin Cheng & Junmei Kang & Xiaoliang Liu, 2022. "Land Cover Changing Pattern in Pre- and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province," Land, MDPI, vol. 11(8), pages 1-24, July.
    5. Joël Masimo Kabuanga & Onésime Mubenga Kankonda & Mehdi Saqalli & Nicolas Maestripieri & Thomas Mumuni Bilintoh & Jean-Pierre Mate Mweru & Aimé Balimbaki Liama & Radar Nishuli & Landing Mané, 2021. "Historical Changes and Future Trajectories of Deforestation in the Ituri-Epulu-Aru Landscape (Democratic Republic of the Congo)," Land, MDPI, vol. 10(10), pages 1-24, October.
    6. Turner, Matthew D. & Eggen, Michael & Teague, Molly S. & Ayantunde, Augustine A., 2021. "Variation in land endowments among villages in West Africa: Implications for land management," Land Use Policy, Elsevier, vol. 111(C).
    7. Sajjad Hussain & Linlin Lu & Muhammad Mubeen & Wajid Nasim & Shankar Karuppannan & Shah Fahad & Aqil Tariq & B. G. Mousa & Faisal Mumtaz & Muhammad Aslam, 2022. "Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data," Land, MDPI, vol. 11(5), pages 1-19, April.
    8. Gladys Maria Villegas Rugel & Daniel Ochoa & Jose Miguel Menendez & Frieke Van Coillie, 2023. "Evaluating the Applicability of Global LULC Products and an Author-Generated Phenology-Based Map for Regional Analysis: A Case Study in Ecuador’s Ecoregions," Land, MDPI, vol. 12(5), pages 1-32, May.
    9. Xue Ao & Qingfei Zhai & Chunyu Zhao & Yan Cui & Xiaoyu Zhou & Jingwei Li & Mingqian Li, 2022. "Influence of Urbanization on Spatio-Temporal Characteristics of Extreme Hourly Precipitation in Shenyang," Land, MDPI, vol. 11(9), pages 1-17, September.
    10. Meryem Qacami & Abdellatif Khattabi & Said Lahssini & Nabil Rifai & Modeste Meliho, 2023. "Land-cover/land-use change dynamics modeling based on land change modeler," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 237-258, February.
    11. Emilia Janeczko & Radosław Dąbrowski & Joanna Budnicka-Kosior & Małgorzata Woźnicka, 2019. "Influence of Urbanization Processes on the Dynamics and Scale of Spatial Transformations in the Mazowiecki Landscape Park," Sustainability, MDPI, vol. 11(11), pages 1-12, May.
    12. Mingjie Shi & Hongqi Wu & Xin Fan & Hongtao Jia & Tong Dong & Panxing He & Muhammad Fahad Baqa & Pingan Jiang, 2021. "Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China," Sustainability, MDPI, vol. 13(3), pages 1-15, February.
    13. Hemati, Touraj & Pourebrahim, Sharareh & Monavari, Masoud & Baghvand, Akbar, 2020. "Species-specific nature conservation prioritization (a combination of MaxEnt, Co$ting Nature and DINAMICA EGO modeling approaches)," Ecological Modelling, Elsevier, vol. 429(C).
    14. Xue Tian & Xinyu Ma & Maowei Huang & Yiting Guo & Hongfei Yang & Liusheng Yang & Hui Chen & Ruoyun Gao & Jian Li & Yongming Lin, 2022. "Spatiotemporal Dynamic Characteristics of Land Use in the Typical Watershed of Wenchuan Earthquake-Affected Areas—A Case Study in the Longxi River Basin," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    15. Junmei Kang & Zhihua Wang & Hongbin Cheng & Jun Wang & Xiaoliang Liu, 2022. "Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    16. Yu Zhang & Pengcheng Wang & Tianwei Wang & Chongfa Cai & Zhaoxia Li & Mingjun Teng, 2018. "Scenarios Simulation of Spatio-Temporal Land Use Changes for Exploring Sustainable Management Strategies," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    17. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    18. Onggarbek Alipbeki & Chaimgul Alipbekova & Arnold Sterenharz & Zhanat Toleubekova & Meirzhan Aliyev & Nursultan Mineyev & Kaiyrbek Amangaliyev, 2020. "A Spatiotemporal Assessment of Land Use and Land Cover Changes in Peri-Urban Areas: A Case Study of Arshaly District, Kazakhstan," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    19. Lawani Adjadi Mounirou & Roland Yonaba & Fowé Tazen & Gebiaw T. Ayele & Zaher Mundher Yaseen & Harouna Karambiri & Hamma Yacouba, 2022. "Soil Erosion across Scales: Assessing Its Sources of Variation in Sahelian Landscapes under Semi-Arid Climate," Land, MDPI, vol. 11(12), pages 1-19, December.
    20. Simon Odawa & Yongwon Seo, 2019. "Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya," Sustainability, MDPI, vol. 11(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1009-:d:1139159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.