IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p339-d1047939.html
   My bibliography  Save this article

Multifunctional Evolution and Allocation Optimization of Rural Residential Land in China

Author

Listed:
  • Yanbo Qu

    (School of Public Administration and Policy, Shandong University of Finance and Economics, Jinan 250014, China
    School of Economics, Shandong University of Finance and Economics, Jinan 250014, China)

  • Meijing Wu

    (School of Public Administration and Policy, Shandong University of Finance and Economics, Jinan 250014, China)

  • Lingyun Zhan

    (School of Economics, Shandong University of Finance and Economics, Jinan 250014, China)

  • Ran Shang

    (College of Resources and Environmental Engineering, Shandong University of Agricultural Engineering, Jinan 250100, China)

Abstract

The rural residential land functions are the comprehensive embodiment of the storage quantity and structural organization of the rural man–land system. Mastering the evolution rule and allocation situation is the basis of effective rural land management and targeted poverty alleviation activities. Based on the theoretical understanding of rural residential multifunction, this paper identifies five functional types and characteristic elements uses a variety of methods to calculate to reveal the spatio-temporal differentiation and allocation and discusses the process mechanism and spatial pattern of function optimization. According to the results, during the sample period, the multifunctional index of rural residential land in China was ranked from large to small as residential function (RF), living function (LF), service function (SF), production function (PF) and ecological function (EF), and the growth rate was ranked from large to small as ecological function (EF), production function (PF), residential function (RF), living function (LF) and service function (SF), and the comprehensive function index increased by more than 50%. The distribution characteristics of all the functional indexes were basically the same. The regional performance was east > central > northeast > west, and the range of each functional index in terms of the interprovincial performance decreased; however, the convergence degree increased, and the number of provinces with comparative advantages in terms of the various functions expanded to more than 50%. The living, ecological, and comprehensive functions increased, while the residential, production, and service functions decreased. The continuous deprivation of the functions and their deprivation in many provinces are problems. This study can provide decision support for promoting the normalization and standardization of superior rural functions.

Suggested Citation

  • Yanbo Qu & Meijing Wu & Lingyun Zhan & Ran Shang, 2023. "Multifunctional Evolution and Allocation Optimization of Rural Residential Land in China," Land, MDPI, vol. 12(2), pages 1-23, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:339-:d:1047939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodríguez Sousa, A.A. & Parra-López, C. & Sayadi-Gmada, S. & Barandica, J.M. & Rescia, A.J., 2020. "A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process," Ecological Economics, Elsevier, vol. 173(C).
    2. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    3. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    4. Wen, Yangyang & Zhang, Zhengfeng & Liang, Di & Xu, Ze, 2020. "Rural Residential Land Transition in the Beijing-Tianjin-Hebei Region: Spatial-Temporal Patterns and Policy Implications," Land Use Policy, Elsevier, vol. 96(C).
    5. Li, Jing & Lo, Kevin & Zhang, Pingyu & Guo, Meng, 2021. "Reclaiming small to fill large: A novel approach to rural residential land consolidation in China," Land Use Policy, Elsevier, vol. 109(C).
    6. Zang, Yuzhu & Liu, Yansui & Yang, Yuanyuan & Woods, Michael & Fois, Francesca, 2020. "Rural decline or restructuring? Implications for sustainability transitions in rural China," Land Use Policy, Elsevier, vol. 94(C).
    7. Qu, Yanbo & Jiang, Guang-hui & Li, Zitong & Tian, Yaya & Wei, Shuwen, 2019. "Understanding rural land use transition and regional consolidation implications in China," Land Use Policy, Elsevier, vol. 82(C), pages 742-753.
    8. Chen, Kunqiu & Long, Hualou & Liao, Liuwen & Tu, Shuangshuang & Li, Tingting, 2020. "Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence," Land Use Policy, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Malinowski, 2023. "Solvency and Debt of Rural Communes vs. Their Residents’ Standards of Living: A Polish Case Study," Agriculture, MDPI, vol. 13(12), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    2. Yanbo Qu & Xiaozhen Dong & Lingyun Zhan & Hongyun Si & Zongli Ping & Weiya Zhu, 2021. "Scale Transition and Structure–Function Synergy Differentiation of Rural Residential Land: A Dimensionality Reduction Transmission Process from Macro to Micro Scale," Land, MDPI, vol. 10(6), pages 1-26, June.
    3. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    4. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    5. Bangrong Shu & Yi Qu, 2022. "Impact Mechanism of the Three Pilot Reforms of the Rural Land System on Rural Residential Land Use Transition: A Regime Shifts Perspective," Land, MDPI, vol. 11(12), pages 1-17, December.
    6. Xuan Luo & Zhaomin Tong & Yifan Xie & Rui An & Zhaochen Yang & Yanfang Liu, 2022. "Land Use Change under Population Migration and Its Implications for Human–Land Relationship," Land, MDPI, vol. 11(6), pages 1-22, June.
    7. Jiwei Li & Qingqing Ye & Weiqiang Chen & Xuesong Kong & Qingsheng Bi & Jie Lu & Enxiang Cai & Hejie Wei & Xinwei Feng & Yulong Guo, 2022. "An Analysis Method of Quantitative Coupling Rationality between Urban–Rural Construction Land and Population: A Case Study of Henan Province in China," Land, MDPI, vol. 11(5), pages 1-18, May.
    8. Ligang Lyu & Zhoubing Gao & Hualou Long & Xiaorui Wang & Yeting Fan, 2021. "Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China," Land, MDPI, vol. 10(4), pages 1-16, March.
    9. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    10. Zhiheng Yang & Nengneng Shen & Yanbo Qu & Bailin Zhang, 2021. "Association between Rural Land Use Transition and Urban–Rural Integration Development: From 2009 to 2018 Based on County-Level Data in Shandong Province, China," Land, MDPI, vol. 10(11), pages 1-22, November.
    11. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    12. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    13. Lingzhi Wang & Anqi Liang & Xinyao Li & Chengge Jiang & Junjie Wu & Hichem Omrani, 2023. "Understanding Recessive Transition of Cultivated Land Use in Jilin Province, China (1990–2020): From Perspective of Productive-Living-Ecological Functions," Land, MDPI, vol. 12(9), pages 1-24, September.
    14. Li, Jing & Lo, Kevin & Zhang, Pingyu & Guo, Meng, 2021. "Reclaiming small to fill large: A novel approach to rural residential land consolidation in China," Land Use Policy, Elsevier, vol. 109(C).
    15. Yingbin Feng & Jingjing Li & Dedong Feng, 2023. "Research on Spatial Restructuring of Farmers’ Homestead Based on the “Point-Line-Surface” Characteristics of Mountain Villages," Land, MDPI, vol. 12(8), pages 1-22, August.
    16. Huang, Dan & Lu, Yanchi & Liu, Yaolin & Liu, Yanfang & Tong, Zhaomin & Xing, Lijun & Dou, Chao, 2024. "Multifunctional evaluation and multiscenario regulation of non-grain farmlands from the grain security perspective: Evidence from the Wuhan Metropolitan Area, China," Land Use Policy, Elsevier, vol. 146(C).
    17. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    18. Bowen Shan & Jian Liu & Yaqiu Liu & Huanhuan Wang & Ailing Wang, 2022. "How Is Construction Land Transition Related to Rural Transformation? Evidence from a Plain County in China Based on the Grey Correlation Model," Land, MDPI, vol. 11(5), pages 1-19, April.
    19. Zhang, Yingnan & Long, Hualou & Chen, Shuocun & Ma, Li & Gan, Muye, 2023. "The development of multifunctional agriculture in farming regions of China: Convergence or divergence?," Land Use Policy, Elsevier, vol. 127(C).
    20. Xinhai Lu & Zhoumi Li & Hongzheng Wang & Yifeng Tang & Bixia Hu & Mingyue Gong & Yulong Li, 2022. "Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China," Land, MDPI, vol. 11(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:339-:d:1047939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.