IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i11p1997-d1271619.html
   My bibliography  Save this article

Exploring the Coupling Coordination Relationship of Urban Resilience System in Ecologically Fragile Areas: Case Study of the Loess Plateau in China

Author

Listed:
  • Yi Xiao

    (Business School, Chengdu University of Technology, Chengdu 610059, China)

  • Jialong Zhong

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Jue Wang

    (Business School, Chengdu University of Technology, Chengdu 610059, China)

  • Lanyue Zhang

    (School of Digital Economics, Sichuan University Jinjiang College, Meishan 620860, China)

  • Xinmeng Qian

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Wei Liu

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Huan Huang

    (Business School, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Urban ecosystem health threats and natural disasters have a prominent influence under the rapid urbanization process, and high urban resilience (UR) is the key to response to human-natural disasters. This study attempts to construct a comprehensive index system of UR based on the DPSIR (Driving—Pressure—State—Impact—Response) framework to explore the coupling coordination relationship and driving factors of UR in ecologically fragile areas, using panel data of 39 cities in the Loess Plateau from 2010 to 2019. The empirical results have shown that most cities present low and medium levels of urban resilience, indicating that the UR of the Loess Plateau is not ideal, that there is a significant spatial difference between the urban resilience and coupling coordination degree (CCD), and the spatial characteristics are represented by “central depression”. Additionally, there are significant discordant relationships among the five subsystems of UR, which means that the pressure subsystem has the highest score, while the driving force subsystem and state subsystem have the lowest score. Regarding the driving factors, institutional quality, scientific and technological expenditure, and industrial upgrading have a significant positive impact on UR, while gross industrial output, urban carbon emissions, and urban population density have a significant negative impact on UR. This study provides a new index system and information and decision-making reference for UR exploration, which is also conducive to the future urban sustainable development planning in ecologically sensitive areas.

Suggested Citation

  • Yi Xiao & Jialong Zhong & Jue Wang & Lanyue Zhang & Xinmeng Qian & Wei Liu & Huan Huang, 2023. "Exploring the Coupling Coordination Relationship of Urban Resilience System in Ecologically Fragile Areas: Case Study of the Loess Plateau in China," Land, MDPI, vol. 12(11), pages 1-21, October.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:1997-:d:1271619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/11/1997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/11/1997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinli Liu & Sijia Li & Xian Xu & Jingshu Luo, 2021. "Integrated natural disasters urban resilience evaluation: the case of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2105-2122, July.
    2. Kahn, Matthew E. & Sun, Weizeng & Zheng, Siqi, 2022. "Clean air as an experience good in urban China," Ecological Economics, Elsevier, vol. 192(C).
    3. Juan Zhang & Mingyuan Zhang & Gang Li, 2021. "Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 447-473, May.
    4. Angela Colucci, 2023. "Resilience Practices Contribution Enabling European Landscape Policy Innovation and Implementation," Land, MDPI, vol. 12(3), pages 1-15, March.
    5. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    6. Lewison, Rebecca L. & Rudd, Murray A. & Al-Hayek, Wissam & Baldwin, Claudia & Beger, Maria & Lieske, Scott N. & Jones, Christian & Satumanatpan, Suvaluck & Junchompoo, Chalatip & Hines, Ellen, 2016. "How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems," Environmental Science & Policy, Elsevier, vol. 56(C), pages 110-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanning Si & Lizhi Liang & Wenguang Zhou, 2024. "An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    2. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Urbanization Impact on Regional Sustainable Development: Through the Lens of Urban-Rural Resilience," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    3. Lee, Munseob & Finerman, Rachel, 2021. "COVID-19, commuting flows, and air quality," Journal of Asian Economics, Elsevier, vol. 77(C).
    4. Shewit Gebremedhin & Abebe Getahun & Wassie Anteneh & Stijn Bruneel & Peter Goethals, 2018. "A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    5. Alexandre Troian & Mário Conill Gomes & Tales Tiecher & Julio Berbel & Carlos Gutiérrez-Martín, 2021. "The Drivers-Pressures-State-Impact-Response Model to Structure Cause−Effect Relationships between Agriculture and Aquatic Ecosystems," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    6. Raul Alves & Sérgio Lousada & José Cabezas & José Manuel Naranjo Gómez, 2023. "Local Housing Strategy: Analysis of Importance and Implementation in Machico Municipality, Madeira," Land, MDPI, vol. 12(9), pages 1-36, September.
    7. Yanni Xiong & Changyou Li & Mengzhi Zou & Qian Xu, 2022. "Investigating into the Coupling and Coordination Relationship between Urban Resilience and Urbanization: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    8. Yang Wei & Tetsuo Kidokoro & Fumihiko Seta & Bo Shu, 2024. "Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China," Land, MDPI, vol. 13(4), pages 1-24, April.
    9. Yao An & Ning Liu & Lin Zhang & Huanhuan Zheng, 2022. "Adapting to climate risks through cross-border investments: industrial vulnerability and smart city resilience," Climatic Change, Springer, vol. 174(1), pages 1-29, September.
    10. Liudan Jiao & Bowei Han & Qilin Tan & Yu Zhang & Xiaosen Huo & Liu Wu & Ya Wu, 2024. "An Improved DPSIR-DEA Assessment Model for Urban Resilience: A Case Study of 105 Large Cities in China," Land, MDPI, vol. 13(8), pages 1-23, July.
    11. Bernardo Tabuenca & Marco Kalz & Ansje Löhr, 2019. "Massive Open Online Education for Environmental Activism: The Worldwide Problem of Marine Litter," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    12. Xiaohang Zhai & Zhe Chen & Chunlan Tan & Guangliang Li, 2023. "Heterogeneity Analysis of Industrial Structure Upgrading on Eco-Environmental Quality from a Spatial Perspective: Evidence from 11 Coastal Provinces in China," Sustainability, MDPI, vol. 15(21), pages 1-22, October.
    13. Md Monzer Hossain Sarker & Alberto Gabino Martinez-Hernandez & Jesús Reyes Vásquez & Perla Rivadeneyra & Sebastian Raimondo, 2024. "Coastal Infrastructure and Climate Change adaptation in Bangladesh: Ecosystem services insights from an integrated SES-DAPSIR framework," Working Papers 2024.17, Fondazione Eni Enrico Mattei.
    14. Haider Mahmood & Maham Furqan & Muhammad Shahid Hassan & Soumen Rej, 2023. "The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review," Sustainability, MDPI, vol. 15(7), pages 1-32, April.
    15. Mohammad Mojibul Hoque Mozumder & Aili Pyhälä & Md. Abdul Wahab & Simo Sarkki & Petra Schneider & Mohammad Mahmudul Islam, 2019. "Understanding Social-Ecological Challenges of a Small-Scale Hilsa ( Tenualosa ilisha ) Fishery in Bangladesh," IJERPH, MDPI, vol. 16(23), pages 1-24, November.
    16. Kanokporn Swangjang & Phitwalan Kornpiphat, 2021. "Does ecotourism in a Mangrove area at Klong Kone, Thailand, conform to sustainable tourism? A case study using SWOT and DPSIR," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15960-15985, November.
    17. Nina Boogen & Massimo Filippini & Adan L. Martinez-Cruz, 2022. "Value of co-benefits from energy saving ventilation systems—Contingent valuations on Swiss home owners," CER-ETH Economics working paper series 22/368, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    18. Changyuan He & Qiang Zhang & Gang Wang & Vijay P. Singh & Tiantian Li & Shuai Cui, 2023. "Evaluation of Urban Resilience of China’s Three Major Urban Agglomerations Using Complex Adaptive System Theory," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    19. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China," Land, MDPI, vol. 11(6), pages 1-14, June.
    20. Cao, Yingui & Dallimer, Martin & Stringer, Lindsay C. & Bai, Zhongke & Siu, Yim Ling, 2018. "Land expropriation compensation among multiple stakeholders in a mining area: Explaining “skeleton house” compensation," Land Use Policy, Elsevier, vol. 74(C), pages 97-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:1997-:d:1271619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.