IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2022i1p44-d1013141.html
   My bibliography  Save this article

Insights into the Effects of Study Area Size and Soil Sampling Density in the Prediction of Soil Organic Carbon by Vis-NIR Diffuse Reflectance Spectroscopy in Two Forest Areas

Author

Listed:
  • Massimo Conforti

    (National Research Council of Italy, Research Institute for Geo-Hydrological Protection (CNR-IRPI), Via Cavour 4/6, 87036 Rende, Italy)

  • Gabriele Buttafuoco

    (National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean (CNR-ISAFOM), Via Cavour 4/6, 87036 Rende, Italy)

Abstract

Sustainable forest land management requires measuring and monitoring soil organic carbon. Visible and near-infrared diffuse reflectance spectroscopy (Vis-NIR, 350–2500 nm), although it has become an important method for predicting soil organic carbon (SOC), requires further studies and methods of analysis to realize its full potential. This study aimed to determine if the size of the study area and soil sampling density may affect the performance of Vis-NIR diffuse reflectance spectroscopy in the prediction of soil organic carbon. Two forest sites in the Calabria region (southern Italy), which differ in terms of area and soil sampling density, were used. The first one was Bonis catchment area (139 ha) with a cover consisting mainly of Calabrian pine, while the second was Mongiana forest area (33.2 ha) within the “Marchesale” Biogenetic Nature Reserve, which is covered by beech. The two study areas are relatively homogeneous regarding parent material and soil type, while they have very different soil sampling density. In particular, Bonis catchment has a lower sampling density (135 samples out of 139 ha) than Mongiana area (231 samples out of 33.2 ha). Three multivariate calibration methods (principal component regression (PCR), partial least square regression (PLSR), and support vector machine regression (SVMR)) were combined with different pretreatment techniques of diffuse reflectance spectra (absorbance, ABS, standard normal variate, SNV, and Savitzky–Golay filtering with first derivative (SG 1st D). All soil samples (0–20 cm) were analyzed in the laboratory for SOC concentration and for measurements of diffuse reflectance spectra in the Vis-NIR region. The set of samples from each study area was randomly divided into a calibration set (70%) and a validation set (30%). The assessment of the goodness for the different calibration models and the following SOC predictions using the validation sets was based on three parameters: the coefficient of determination ( R 2 ), the root mean square error ( RMSE ), and the interquartile range ( RPIQ ). The results showed that for the two study areas, different levels of goodness of the prediction models depended both on the type of pretreatment and the multivariate method used. Overall, the prediction models obtained with PLSR and SVMR performed better than those of PCR. The best performance was obtained with the SVMR method combined with ABS + SNV + SG 1st D pretreatment ( R 2 ≥ 0.77 and RPIQ > 2.30). However, there is no result that can absolutely provide definitive indications of either the effects of the study area size and soil sampling density in the prediction of SOC by vis-NIR spectroscopy, but this study fostered the need for future investigations in areas and datasets of different sizes from those in this study and including also different soil landscapes.

Suggested Citation

  • Massimo Conforti & Gabriele Buttafuoco, 2022. "Insights into the Effects of Study Area Size and Soil Sampling Density in the Prediction of Soil Organic Carbon by Vis-NIR Diffuse Reflectance Spectroscopy in Two Forest Areas," Land, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jlands:v:12:y:2022:i:1:p:44-:d:1013141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Conforti & Giorgio Matteucci & Gabriele Buttafuoco, 2017. "Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve ‘Marchesale’ (Calabria region, southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 91-99, November.
    2. Theodora Angelopoulou & Athanasios Balafoutis & George Zalidis & Dionysis Bochtis, 2020. "From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Snapp, Sieglinde, 2022. "Embracing variability in soils on smallholder farms: New tools and better science," Agricultural Systems, Elsevier, vol. 195(C).
    2. Nerea Ferrando Jorge & Joanna Clark & Macarena L. Cárdenas & Hilary Geoghegan & Vicky Shannon, 2021. "Measuring Soil Colour to Estimate Soil Organic Carbon Using a Large-Scale Citizen Science-Based Approach," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    3. George Kyriakarakos & Theodoros Petropoulos & Vasso Marinoudi & Remigio Berruto & Dionysis Bochtis, 2024. "Carbon Farming: Bridging Technology Development with Policy Goals," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    4. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    5. Francisco Javier Esquivel & José Antonio Esquivel & Antonio Morgado & José L. Romero-Béjar & Luis F. García del Moral, 2022. "Preprocessing of Spectroscopic Data Using Affine Transformations to Improve Pattern-Recognition Analysis: An Application to Prehistoric Lithic Tools," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    6. Lwandile Nduku & Cilence Munghemezulu & Zinhle Mashaba-Munghemezulu & Wonga Masiza & Phathutshedzo Eugene Ratshiedana & Ahmed Mukalazi Kalumba & Johannes George Chirima, 2024. "Field-Scale Winter Wheat Growth Prediction Applying Machine Learning Methods with Unmanned Aerial Vehicle Imagery and Soil Properties," Land, MDPI, vol. 13(3), pages 1-26, February.
    7. Charisios Achillas & Dionysis Bochtis, 2020. "Toward a Green, Closed-Loop, Circular Bioeconomy: Boosting the Performance Efficiency of Circular Business Models," Sustainability, MDPI, vol. 12(23), pages 1-6, December.
    8. Stanisław Gruszczyński & Wojciech Gruszczyński, 2022. "Assessing the Information Potential of MIR Spectral Signatures for Prediction of Multiple Soil Properties Based on Data from the AfSIS Phase I Project," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    9. Chaoqun Chen & Qigang Jiang & Zhenchao Zhang & Pengfei Shi & Yan Xu & Bin Liu & Jing Xi & ShouZhi Chang, 2020. "Hyperspectral Inversion of Petroleum Hydrocarbon Contents in Soil Based on Continuum Removal and Wavelet Packet Decomposition," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    10. Javier Reyes & Mareike Ließ, 2023. "On-the-Go Vis-NIR Spectroscopy for Field-Scale Spatial-Temporal Monitoring of Soil Organic Carbon," Agriculture, MDPI, vol. 13(8), pages 1-15, August.
    11. Konstantinos Karyotis & Theodora Angelopoulou & Nikolaos Tziolas & Evgenia Palaiologou & Nikiforos Samarinas & George Zalidis, 2021. "Evaluation of a Micro-Electro Mechanical Systems Spectral Sensor for Soil Properties Estimation," Land, MDPI, vol. 10(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2022:i:1:p:44-:d:1013141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.