IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1573-d915198.html
   My bibliography  Save this article

Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing

Author

Listed:
  • Yongchao Qu

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
    Beijing Municipal Institute of City Planning & Design, Beijing 100045, China)

  • Jian Zhang

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Chongyuan Xu

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yichao Gao

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Shanwen Zheng

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Meiling Xia

    (Beijing Tsinghua TongHeng Urban Planning & Design Institute, Beijing 100085, China)

Abstract

Carbon metabolism research has attracted worldwide attention as an important way to cope with climate change, promote carbon emission reduction, increase carbon sequestration, and support low-carbon city construction. Ecological network analysis (ENA) plays an important role in network analysis and simulation of carbon metabolism. However, current studies largely focus on single elements or local processes while rarely analyzing the spatial coupling between land use and carbon metabolism. Therefore, taking Tongzhou District as an example, based on the data of land use change and energy consumption, this study constructed an analysis framework based on ENA to explore the comprehensive impact of land use changes on carbon metabolism. The results show the following: (1) From 2014 to 2020, the total carbon emissions increased year by year. Carbon emissions of other construction land (OCL) were dominant, while the carbon sequestration capacity of forest land (FL) increased by 236%. The positive carbon metabolic density remained relatively stable, while the negative carbon metabolic density decreased year by year. (2) The negative carbon flow was concentrated in the transfer of other land to OCL, accounting for 40.2% of the total negative “carbon flow.” The positive carbon flow was primarily from the transfer of other land to FL. (3) From 2014 to 2016, the spatial ecological relationships of carbon flow were dominated by exploitation and control. From 2016 to 2018, competition relationships intensified due to the expansion of the field; from 2016 to 2018, exploitation and control relationships, competition relationships, and mutualism relationships increased significantly and were evenly distributed. This study provides decision-making guidance for the subsequent formulation of government carbon emission reduction policies.

Suggested Citation

  • Yongchao Qu & Jian Zhang & Chongyuan Xu & Yichao Gao & Shanwen Zheng & Meiling Xia, 2022. "Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing," Land, MDPI, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1573-:d:915198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    2. Xiaolan Chen & Qinggang Meng & Jianing Shi & Yufei Liu & Jing Sun & Wanfang Shen, 2022. "Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China," Land, MDPI, vol. 11(7), pages 1-19, July.
    3. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    4. Zheng, Heyun & Ge, Liming, 2022. "Carbon emissions reduction effects of sustainable development policy in resource-based cities from the perspective of resource dependence: Theory and Chinese experience," Resources Policy, Elsevier, vol. 78(C).
    5. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    6. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    7. Yang, Siyuan & Fath, Brian & Chen, Bin, 2016. "Ecological network analysis of embodied particulate matter 2.5 – A case study of Beijing," Applied Energy, Elsevier, vol. 184(C), pages 882-888.
    8. Han Chen & Chunyu Meng & Qilin Cao, 2022. "Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function," Land, MDPI, vol. 11(7), pages 1-16, July.
    9. Kay, Sonja & Rega, Carlo & Moreno, Gerardo & den Herder, Michael & Palma, João H.N. & Borek, Robert & Crous-Duran, Josep & Freese, Dirk & Giannitsopoulos, Michail & Graves, Anil & Jäger, Mareike & Lam, 2019. "Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe," Land Use Policy, Elsevier, vol. 83(C), pages 581-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    4. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    5. Yuting Wang & Lei Wang & Zhemin Li, 2020. "Dynamic Analysis of China’s Imported Raw Milk Powder Consumption," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    6. Jeroen C. J. M. van den Bergh, 1999. "Materials, Capital, Direct/Indirect Substitution, and Mass Balance Production Functions," Land Economics, University of Wisconsin Press, vol. 75(4), pages 547-561.
    7. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    8. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    9. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    10. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    11. Toman, Michael & Lile, Ronald D. & King, Dennis M., 1998. "Assessing Sustainability: Some Conceptual and Empirical Challenges," Discussion Papers 10756, Resources for the Future.
    12. Nasir, Mohammed Haneef Abdul & Genovese, Andrea & Acquaye, Adolf A. & Koh, S.C.L. & Yamoah, Fred, 2017. "Comparing linear and circular supply chains: A case study from the construction industry," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 443-457.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.
    15. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    16. Schwabe, Kurt A., 2000. "Modeling state-level water quality management: the case of the Neuse River Basin," Resource and Energy Economics, Elsevier, vol. 22(1), pages 37-62, January.
    17. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    18. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    19. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    20. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1573-:d:915198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.