IDEAS home Printed from https://ideas.repec.org/a/cog/urbpla/v4y2019i1p152-171.html
   My bibliography  Save this article

Incorporating Metabolic Thinking into Regional Planning: The Case of the Sierra Calderona Strategic Plan

Author

Listed:
  • Juanjo Galan

    (Department of Architecture, Aalto University, Finland)

  • Daniela Perrotti

    (Université Catholique de Louvain, Belgium)

Abstract

The metabolic study of the southeastern part of the Calderona Mountain Range (Sierra Calderona) was developed over an area of 200 square kilometers. Due to its location on the outskirt of the Metropolitan Area of Valencia (Spain), the Calderona Mountain Range presents most of the metabolic challenges and potentials that characterize peri-urban areas. The main goal of the study was to increase the sustainability levels of the region by optimizing the flows of materials and energy, as well as flows related to the transport of people within and in/outside the region. The following article includes a methodological introduction to regional and urban metabolic studies. Secondly, it presents the specific application of those principles in the Sierra Calderona case and the qualitative and quantitative results of the assessed regional flows. Moreover, the use of Metabolic Functional Areas (FMAs) is proposed to better integrate metabolic studies with land-use and spatial planning. In its second section, the article also presents the potential for shifting toward an optimized metabolism of the studied area, as well as a set of strategies and actions for their achievement. Finally, in the conclusions, we present a critical reflection on the methods, data, exportability and scalability of the results produced in the Sierra Calderona Case. Due to its regional character, the metabolic performance of the Sierra Calderona is connected to a wide range of land uses, productive functions and stakeholders. That is the reason why the formulated strategies and actions are deeply interlinked with different sectors and why they were supported by the results of an open participatory process. However, and in spite of its regional scope, the urban systems of the Sierra Calderona proved to be an essential lever for improving the regional and local sustainability, due to their varied morphological structures, distinctive ways of functioning, and different types of interaction with the surroundings.

Suggested Citation

  • Juanjo Galan & Daniela Perrotti, 2019. "Incorporating Metabolic Thinking into Regional Planning: The Case of the Sierra Calderona Strategic Plan," Urban Planning, Cogitatio Press, vol. 4(1), pages 152-171.
  • Handle: RePEc:cog:urbpla:v4:y:2019:i:1:p:152-171
    DOI: 10.17645/up.v4i1.1549
    as

    Download full text from publisher

    File URL: https://www.cogitatiopress.com/urbanplanning/article/view/1549
    Download Restriction: no

    File URL: https://libkey.io/10.17645/up.v4i1.1549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davoudi, Simin & Sturzaker, John, 2017. "Urban form, policy packaging and sustainable urban metabolism," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 55-64.
    2. Samuel Niza & Leonardo Rosado & Paulo Ferrão, 2009. "Urban Metabolism: Methodological Advances in Urban Material Flow Accounting Based on the Lisbon Case Study," Journal of Industrial Ecology, Yale University, vol. 13(3), pages 384-405, June.
    3. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    4. Ilse M. Voskamp & Sven Stremke & Marc Spiller & Daniela Perrotti & Jan Peter Hoek & Huub H. M. Rijnaarts, 2017. "Enhanced Performance of the Eurostat Method for Comprehensive Assessment of Urban Metabolism: A Material Flow Analysis of Amsterdam," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 887-902, August.
    5. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juanjo Galan & Daniela Perrotti, 2019. "Incorporating Metabolic Thinking into Regional Planning: The Case of the Sierra Calderona Strategic Plan," Urban Planning, Cogitatio Press, vol. 4(1), pages 152-171.
    2. Daniela Perrotti & Sven Stremke, 2020. "Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research," Environment and Planning B, , vol. 47(4), pages 678-694, May.
    3. Davide Longato & Giulia Lucertini & Michele Dalla Fontana & Francesco Musco, 2019. "Including Urban Metabolism Principles in Decision-Making: A Methodology for Planning Waste and Resource Management," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    4. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Urban Metabolism of Six Asian Cities," ADB Reports RPT146817-2, Asian Development Bank (ADB).
    5. Mohammad Taleghani & Azadeh Montazami & Daniela Perrotti, 2020. "Learning to Chill: The Role of Design Schools and Professional Training to Improve Urban Climate and Urban Metabolism," Energies, MDPI, vol. 13(9), pages 1-14, May.
    6. Bodini, Antonio & Bondavalli, Cristina & Allesina, Stefano, 2012. "Cities as ecosystems: Growth, development and implications for sustainability," Ecological Modelling, Elsevier, vol. 245(C), pages 185-198.
    7. Pina, André & Ferrão, Paulo & Ferreira, Daniela & Santos, Luís & Monit, Michal & Rodrigues, João F.D. & Niza, Samuel, 2016. "The physical structure of urban economies — Comparative assessment," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 220-229.
    8. Pauliuk, Stefan & Hertwich, Edgar G., 2015. "Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies," Ecological Economics, Elsevier, vol. 119(C), pages 83-93.
    9. Yanxian Li & Jiawen Wang & Dan Xian & Yan Zhang & Xiangyi Yu, 2021. "Regional consumption, material flows, and their driving forces: A case study of China's Beijing–Tianjin–Hebei (Jing–Jin–Ji) urban agglomeration," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 751-764, June.
    10. Marteleira, Rita & Pinto, Guilherme & Niza, Samuel, 2014. "Regional water flows – Assessing opportunities for sustainable management," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 63-74.
    11. Asterios Papageorgiou & Anna Björklund & Rajib Sinha, 2024. "Applying material and energy flow analysis to assess urban metabolism in the context of the circular economy," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 885-900, August.
    12. Bahers, Jean-Baptiste & Tanguy, Audrey & Pincetl, Stephanie, 2020. "Metabolic relationships between cities and hinterland: a political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France)," Ecological Economics, Elsevier, vol. 167(C).
    13. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    14. Browne, David & O'Regan, Bernadette & Moles, Richard, 2012. "Comparison of energy flow accounting, energy flow metabolism ratio analysis and ecological footprinting as tools for measuring urban sustainability: A case-study of an Irish city-region," Ecological Economics, Elsevier, vol. 83(C), pages 97-107.
    15. Jeroen C. J. M. van den Bergh, 1999. "Materials, Capital, Direct/Indirect Substitution, and Mass Balance Production Functions," Land Economics, University of Wisconsin Press, vol. 75(4), pages 547-561.
    16. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    17. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    18. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    19. Toman, Michael & Lile, Ronald D. & King, Dennis M., 1998. "Assessing Sustainability: Some Conceptual and Empirical Challenges," Discussion Papers 10756, Resources for the Future.
    20. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cog:urbpla:v4:y:2019:i:1:p:152-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: António Vieira or IT Department (email available below). General contact details of provider: https://www.cogitatiopress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.