Inversion Estimation of Soil Organic Matter in Songnen Plain Based on Multispectral Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huihui Zhao & Peijia Liu & Baojin Qiao & Kening Wu, 2021. "The Spatial Distribution and Prediction of Soil Heavy Metals Based on Measured Samples and Multi-Spectral Images in Tai Lake of China," Land, MDPI, vol. 10(11), pages 1-13, November.
- Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li Wang & Yong Zhou, 2022. "Combining Multitemporal Sentinel-2A Spectral Imaging and Random Forest to Improve the Accuracy of Soil Organic Matter Estimates in the Plough Layer for Cultivated Land," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
- Huijuan Zhang & Wenkai Liu & Qingfeng Hu & Xiaodong Huang, 2023. "Multi-Scale Integration and Distribution of Soil Organic Matter Spatial Variation in a Coal–Grain Compound Area," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bauwens, L. & Galli, F., 2009.
"Efficient importance sampling for ML estimation of SCD models,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
- Luc, BAUWENS & Fausto Galli, 2007. "Efficient importance sampling for ML estimation of SCD models," Discussion Papers (ECON - Département des Sciences Economiques) 2007032, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & GALLI, Fausto, 2007. "Efficient importance sampling for ML estimation of SCD models," LIDAM Discussion Papers CORE 2007053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & GALLI, Fausto, 2009. "Efficient importance sampling for ML estimation of SCD models," LIDAM Reprints CORE 2088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," LIDAM Discussion Papers CORE 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
- Asai, Manabu & McAleer, Michael, 2015.
"Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance,"
Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Nolte, Ingmar & Voev, Valeri, 2007. "Panel intensity models with latent factors: An application to the trading dynamics on the foreign exchange market," CoFE Discussion Papers 07/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008.
"Parameterisation and efficient MCMC estimation of non-Gaussian state space models,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
- Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
- Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
- Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009.
"Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models,"
Working Papers
20-2009, Singapore Management University, School of Economics.
- Tore Selland Kleppe & Hans J. Skaug & Jun Yu, 2009. "Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers CoFie-09-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Yu Zhang & Meiling Liu & Li Kong & Tao Peng & Dong Xie & Li Zhang & Lingwen Tian & Xinyu Zou, 2022. "Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images," IJERPH, MDPI, vol. 19(5), pages 1-14, February.
- Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011.
"Simulated Maximum Likelihood Estimation for Latent Diffusion Models,"
Working Papers
10-2011, Singapore Management University, School of Economics.
- Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2012. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 12-2012, Singapore Management University, School of Economics.
- Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers CoFie-04-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
- Ishihara, Tsunehiro & Omori, Yasuhiro, 2012.
"Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
- Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CIRJE F-Series CIRJE-F-700, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2010. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CIRJE F-Series CIRJE-F-746, CIRJE, Faculty of Economics, University of Tokyo.
- Tsunehiro Ishihara & Yasuhiro Omori, 2010. "Efficient Bayesian Estimation of a Multivariate Stochastic Volatility Model with Cross Leverage and Heavy-Tailed Errors," CARF F-Series CARF-F-221, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
- Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019.
"Forecast density combinations of dynamic models and data driven portfolio strategies,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart (L.F.) Hoogerheide & Herman (H.K.) van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Tinbergen Institute Discussion Papers 18-076/III, Tinbergen Institute.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
- Jean-Francois Richard & Roman Liesenfeld, 2007. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Working Paper 322, Department of Economics, University of Pittsburgh, revised Jan 2004.
- repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
- Manabu Asai & Michael McAleer, 2011.
"Alternative Asymmetric Stochastic Volatility Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
- Manabu Asai & Michael McAleer, 2009. "Alternative Asymmetric Stochastic Volatility Models," CARF F-Series CARF-F-166, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," KIER Working Papers 739, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
- Asai, M. & McAleer, M.J., 2010. "Alternative Asymmetric Stochastic Volatility Models," Econometric Institute Research Papers EI 2010-69, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2009. "Alternative Asymmetric Stochastic Volatility Models," CIRJE F-Series CIRJE-F-655, CIRJE, Faculty of Economics, University of Tokyo.
- Blazsek, Szabolcs & Escribano, Alvaro, 2010.
"Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
- Blazsek, Szabolcs, 2009. "Knowledge spillovers in U.S. patents: a dynamic patent intensity model with secret common innovation factors," UC3M Working papers. Economics we098951, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Szabolcs Blazsek & Alvaro Escribano, 2010. "Knowledge spillovers in U.S. patents: A dynamic patent intensity model with secret common innovation factors," Post-Print hal-00732533, HAL.
- Ozturk, Serda Selin & Demirer, Riza & Gupta, Rangan, 2022.
"Climate uncertainty and carbon emissions prices: The relative roles of transition and physical climate risks,"
Economics Letters, Elsevier, vol. 217(C).
- Serda Selin Ozturk & Riza Demirer & Rangan Gupta, 2022. "Climate Uncertainty and Carbon Emissions Prices: The Relative Roles of Transition and Physical Climate Risks," Working Papers 202215, University of Pretoria, Department of Economics.
More about this item
Keywords
soil organic matter; Sentinel-2A; remote sensing; differential algorithm; multispectral modeling; PLSR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:608-:d:798641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.