IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p496-d782386.html
   My bibliography  Save this article

Variability of Permafrost and Landscape Conditions Following Forest Fires in the Central Yakutian Taiga Zone

Author

Listed:
  • Marat I. Petrov

    (Permafrost Landscapes Laboratory, Melnikov Permafrost Institute of the Siberian Branch of the RAS, 677010 Yakutsk, Russia)

  • Alexander N. Fedorov

    (Permafrost Landscapes Laboratory, Melnikov Permafrost Institute of the Siberian Branch of the RAS, 677010 Yakutsk, Russia)

  • Pavel Y. Konstantinov

    (Permafrost Landscapes Laboratory, Melnikov Permafrost Institute of the Siberian Branch of the RAS, 677010 Yakutsk, Russia)

  • Radomir N. Argunov

    (Permafrost Landscapes Laboratory, Melnikov Permafrost Institute of the Siberian Branch of the RAS, 677010 Yakutsk, Russia)

Abstract

In the last two decades in Central Yakutia, there has been a significant change in cryogenic landscapes related to climate warming and anthropogenic disturbances. This period is characterized by the activity of forest fires, which significantly impact permafrost landscapes. We observed the dynamics of cryogenic landscapes after a forest fire in 2001 at the Neleger station in Central Yakutia, 35 km northwest of Yakutsk. The observations included ground temperature and active layer thickness monitoring and statements of changes in the soil moisture content of the active layer. Increases in ground temperature, the active layer thickness, and soil moisture content on the burnt site after a forest fire in Neleger station were noted in the first six to seven years after the disturbance. We found that, following forest fires, permafrost progressively restabilizes as forest cover redevelops over time. The results of the studies will become the basis for planning restoration work after forest fires in permafrost landscapes of Central Yakutia.

Suggested Citation

  • Marat I. Petrov & Alexander N. Fedorov & Pavel Y. Konstantinov & Radomir N. Argunov, 2022. "Variability of Permafrost and Landscape Conditions Following Forest Fires in the Central Yakutian Taiga Zone," Land, MDPI, vol. 11(4), pages 1-11, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:496-:d:782386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoshihiro Iijima & Alexander N. Fedorov & Hotaek Park & Kazuyoshi Suzuki & Hironori Yabuki & Trofim C. Maximov & Tetsuo Ohata, 2010. "Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(1), pages 30-41, January.
    2. Sharon L. Smith & Daniel W. Riseborough & Philip P. Bonnaventure, 2015. "Eighteen Year Record of Forest Fire Effects on Ground Thermal Regimes and Permafrost in the Central Mackenzie Valley, NWT, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 26(4), pages 289-303, October.
    3. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    4. Koichiro Harada & Kazushige Wada & Tetsuo Sueyoshi & Masami Fukuda, 2006. "Resistivity structures in alas areas in Central Yakutia, Siberia, and the interpretation of permafrost history," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 17(2), pages 105-118, April.
    5. Alexander N. Fedorov & Go Iwahana & Pavel Y. Konstantinov & Takashi Machimura & Radomir N. Argunov & Peter V. Efremov & Larry M.C. Lopez & Fumiaki Takakai, 2017. "Variability of Permafrost and Landscape Conditions Following Clear Cutting of Larch Forest in Central Yakutia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(1), pages 331-338, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandr Zhirkov & Maksim Sivtsev & Vasylii Lytkin & Anatolii Kirillin & Antoine Séjourné & Zhi Wen, 2023. "An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-17, January.
    2. Aleksandr Zhirkov & Petr Permyakov & Zhi Wen & Anatolii Kirillin, 2021. "Influence of Rainfall Changes on the Temperature Regime of Permafrost in Central Yakutia," Land, MDPI, vol. 10(11), pages 1-19, November.
    3. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    4. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    5. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Vasylii Lytkin & Alexander Suleymanov & Lilia Vinokurova & Stepan Grigorev & Victoriya Golomareva & Svyatoslav Fedorov & Aitalina Kuzmina & Igor Syromyatnikov, 2021. "Influence of Permafrost Landscapes Degradation on Livelihoods of Sakha Republic (Yakutia) Rural Communities," Land, MDPI, vol. 10(2), pages 1-21, January.
    7. Victor Makarov & Grigory Savvinov & Lyudmila Gavrilieva & Anna Gololobova, 2020. "The Effect of Grazing on the Temperature Regime of the Alas Soils of Central Yakutia," Land, MDPI, vol. 9(10), pages 1-15, October.
    8. Alexander N. Fedorov & Pavel Y. Konstantinov & Nikolay F. Vasiliev & Nikolay I. Basharin & Andrei G. Shepelev & Varvara A. Andreeva & Valerii P. Semenov & Yaroslav I. Torgovkin & Alexey R. Desyatkin &, 2022. "Ice Volumes in Permafrost Landscapes of Arctic Yakutia," Land, MDPI, vol. 11(12), pages 1-11, December.
    9. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
    10. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Moisei Zakharov & Sébastien Gadal & Jūratė Kamičaitytė & Mikhail Cherosov & Elena Troeva, 2022. "Distribution and Structure Analysis of Mountain Permafrost Landscape in Orulgan Ridge (Northeast Siberia) Using Google Earth Engine," Land, MDPI, vol. 11(8), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:496-:d:782386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.