IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p1901-d953925.html
   My bibliography  Save this article

Applicable Framework for Evaluating Urban Vitality with Multiple-Source Data: Empirical Research of the Pearl River Delta Urban Agglomeration Using BPNN

Author

Listed:
  • Xuefeng Huang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
    Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China)

  • Penghui Jiang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
    Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China)

  • Manchun Li

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
    Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China
    Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China)

  • Xin Zhao

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
    Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China)

Abstract

Urban vitality is a mirror reflection of ‘urban disease’ in cities. The research on urban vitality has made great progress in evaluation frameworks; however, these frameworks cannot jointly account for the macro and micro performance of urban vitality. It is better to establish an integrated evaluation framework for this topic. This paper defines urban vitality as the comprehensive strength to support dense and diverse activities based on urban development and the urban environment, and subsequently develops an integrated framework including economic, social, cultural, and spatial dimensions. With the nonlinear evaluation model of a back propagation neural network, we further presented the result of an application on the Pearl River Delta urban agglomeration. Our profiling results illustrate the core-edge structure of urban vitality. There are differences in vitality performance within built-up areas, which shows that areas with urban landscapes and excellent infrastructure are more vibrant. The integrated framework with good applicability improves the evaluation of urban vitality that is crucial to city examination and urban planning. Hence, this study provides a comprehensive reference for optimizing resource allocation and promoting sustainable development.

Suggested Citation

  • Xuefeng Huang & Penghui Jiang & Manchun Li & Xin Zhao, 2022. "Applicable Framework for Evaluating Urban Vitality with Multiple-Source Data: Empirical Research of the Pearl River Delta Urban Agglomeration Using BPNN," Land, MDPI, vol. 11(11), pages 1-21, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1901-:d:953925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/1901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/1901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiangang Shi & Wei Miao & Hongyun Si & Ting Liu, 2021. "Urban Vitality Evaluation and Spatial Correlation Research: A Case Study from Shanghai, China," Land, MDPI, vol. 10(11), pages 1-15, November.
    2. Delclòs-Alió, Xavier & Miralles-Guasch, Carme, 2018. "Looking at Barcelona through Jane Jacobs’s eyes: Mapping the basic conditions for urban vitality in a Mediterranean conurbation," Land Use Policy, Elsevier, vol. 75(C), pages 505-517.
    3. Jun Zhang & Xiong He & Xiao-Die Yuan, 2020. "Research on the relationship between Urban economic development level and urban spatial structure—A case study of two Chinese cities," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    4. Anqi Zhang & Weifeng Li & Jiayu Wu & Jian Lin & Jianqun Chu & Chang Xia, 2021. "How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China," Environment and Planning B, , vol. 48(5), pages 1245-1262, June.
    5. He, Qingsong & He, Weishan & Song, Yan & Wu, Jiayu & Yin, Chaohui & Mou, Yanchuan, 2018. "The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’," Land Use Policy, Elsevier, vol. 78(C), pages 726-738.
    6. Chengming Li & Xiaoyan Wang & Zheng Wu & Zhaoxin Dai & Jie Yin & Chengcheng Zhang, 2021. "An Improved Method for Urban Built-Up Area Extraction Supported by Multi-Source Data," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    7. Sun, Wei & Xu, Yanfeng, 2016. "Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 101(C), pages 366-379.
    8. Bo Huang & Yulun Zhou & Zhigang Li & Yimeng Song & Jixuan Cai & Wei Tu, 2020. "Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study," Environment and Planning B, , vol. 47(9), pages 1543-1559, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aibo Jin & Yunyu Ge & Shiyang Zhang, 2024. "Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment," Land, MDPI, vol. 13(7), pages 1-22, July.
    2. Guancen Wu & Dongqin Yang & Xing Niu & Zixuan Mi, 2024. "The Impact of Park Green Space Areas on Urban Vitality: A Case Study of 35 Large and Medium-Sized Cities in China," Land, MDPI, vol. 13(10), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyao Lin & Yaye Zhuang & Yang Zhao & Hua Li & Xiaoyu He & Siyan Lu, 2022. "Measuring the Non-Linear Relationship between Three-Dimensional Built Environment and Urban Vitality Based on a Random Forest Model," IJERPH, MDPI, vol. 20(1), pages 1-18, December.
    2. Hu, Qiyu & Shen, Wencang & Yan, Jinming & Kong, Weilong & Li, Wei & Zhang, Zhengfeng, 2024. "Does existing mixed land development promote the urban spatial composite function? Evidence from Beijing, China," Land Use Policy, Elsevier, vol. 143(C).
    3. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    4. Paköz, Muhammed Ziya & Yaratgan, Dilara & Şahin, Aydan, 2022. "Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey," Land Use Policy, Elsevier, vol. 114(C).
    5. Ziyu Wang & Nan Xia & Xin Zhao & Xing Gao & Sudan Zhuang & Manchun Li, 2023. "Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    6. Aibo Jin & Yunyu Ge & Shiyang Zhang, 2024. "Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment," Land, MDPI, vol. 13(7), pages 1-22, July.
    7. Shili Chen & Wei Lang & Xun Li, 2022. "Evaluating Urban Vitality Based on Geospatial Big Data in Xiamen Island, China," SAGE Open, , vol. 12(4), pages 21582440221, October.
    8. He Liu & Xueming Li, 2022. "Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China," Land, MDPI, vol. 11(5), pages 1-20, April.
    9. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    10. Nuria Vidal Domper & Gonzalo Hoyos-Bucheli & Marta Benages Albert, 2023. "Jane Jacobs’s Criteria for Urban Vitality: A Geospatial Analysis of Morphological Conditions in Quito, Ecuador," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    11. Wanshu Wu & Ziying Ma & Jinhan Guo & Xinyi Niu & Kai Zhao, 2022. "Evaluating the Effects of Built Environment on Street Vitality at the City Level: An Empirical Research Based on Spatial Panel Durbin Model," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    12. Jian-gang Shi & Wei Miao & Hongyun Si, 2019. "Visualization and Analysis of Mapping Knowledge Domain of Urban Vitality Research," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    13. Jing Huang & Xiao Hu & Jieqiong Wang & Andong Lu, 2023. "How Diversity and Accessibility Affect Street Vitality in Historic Districts?," Land, MDPI, vol. 12(1), pages 1-23, January.
    14. Wenshi Yang & Fan Chen & Qianqian Wei & Zhenwei Peng, 2024. "Relationships between Resident Activities and Physical Space in Shrinking Cities in China—The Case of Chaoyang City," Land, MDPI, vol. 13(4), pages 1-18, April.
    15. Qingsong He & Miao Yan & Linzi Zheng & Bo Wang & Jiang Zhou, 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector," Land, MDPI, vol. 12(4), pages 1-17, March.
    16. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    17. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    18. Feng, Rundong & Wang, Kaiyong, 2022. "The direct and lag effects of administrative division adjustment on urban expansion patterns in Chinese mega-urban agglomerations," Land Use Policy, Elsevier, vol. 112(C).
    19. Grace Abou Jaoude & Majd Murad & Olaf Mumm & Vanessa Miriam Carlow, 2024. "Operationalizing the open city concept: A case study of Berlin," Environment and Planning B, , vol. 51(3), pages 721-744, March.
    20. Bahram Zikirya & Yueqing Xing & Chunshan Zhou, 2024. "The Matching Relationship Between the Distribution Characteristics of High-Grade Tourist Attractions and Spatial Vitality in Xinjiang," Sustainability, MDPI, vol. 16(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1901-:d:953925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.