IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p971-d636356.html
   My bibliography  Save this article

Perennial Crop Dynamics May Affect Long-Run Groundwater Levels

Author

Listed:
  • Bradley Franklin

    (The Nature Conservancy, Los Angeles, CA 90071, USA)

  • Kurt Schwabe

    (School of Public Policy, University of California, Riverside, CA 92507, USA)

  • Lucia Levers

    (Sustainable Agricultural Water Systems, USDA-ARS, Davis, CA 95616, USA)

Abstract

During California’s severe drought from 2011 to 2017, a significant shift in irrigated area from annual to perennial crops occurred. Due to the time requirements associated with bringing perennial crops to maturity, more perennial acreage likely increases the opportunity costs of fallowing, a common drought mitigation strategy. Increases in the costs of fallowing may put additional pressure on another common “go-to” drought mitigation strategy—groundwater pumping. Yet, overdrafted groundwater systems worldwide are increasingly becoming the norm. In response to depleting aquifers, as evidenced in California, sustainable groundwater management policies are being implemented. There has been little modeling of the potential effect of increased perennial crop production on groundwater use and the implications for public policy. A dynamic, integrated deterministic model of agricultural production in Kern County, CA, is developed here with both groundwater and perennial area by vintage treated as stock variables. Model scenarios investigate the impacts of surface water reductions and perennial prices on land and groundwater use. The results generally indicate that perennial production may lead to slower aquifer draw-down compared with deterministic models lacking perennial crop dynamics, highlighting the importance of accounting for the dynamic nature of perennial crops in understanding the co-evolution of agricultural and groundwater systems under climate change.

Suggested Citation

  • Bradley Franklin & Kurt Schwabe & Lucia Levers, 2021. "Perennial Crop Dynamics May Affect Long-Run Groundwater Levels," Land, MDPI, vol. 10(9), pages 1-18, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:971-:d:636356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    2. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    3. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    4. Mohammad Hasan Mahmoudi & Mohammad Reza Najafi & Harsimrenjit Singh & Markus Schnorbus, 2021. "Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing," Climatic Change, Springer, vol. 165(1), pages 1-19, March.
    5. Keith C. Knapp, 1987. "Dynamic Equilibrium in Markets for Perennial Crops," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(1), pages 97-105.
    6. Ben C. French & Raymond G. Bressler, 1962. "The Lemon Cycle," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 44(4), pages 1021-1036.
    7. Booker J. F. & Young R. A., 1994. "Modeling Intrastate and Interstate Markets for Colorado River Water Resources," Journal of Environmental Economics and Management, Elsevier, vol. 26(1), pages 66-87, January.
    8. Keith C. Knapp & Kurt A. Schwabe, 2008. "Spatial Dynamics of Water and Nitrogen Management in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 524-539.
    9. Knapp, Keith C. & Schwabe, Kurt A., 2008. "AJAE Appendix: Spatial Dynamics of Water and Nitrogen Management in Irrigated Agriculture," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(2), pages 1-17.
    10. Knapp, Keith C. & Baerenklau, Kenneth A., 2006. "Ground Water Quantity and Quality Management: Agricultural Production and Aquifer Salinization over Long Time Scales," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-26, December.
    11. David Adamson & Adam Loch & Kurt Schwabe, 2017. "Adaptation responses to increasing drought frequency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), pages 385-403, July.
    12. Schwabe, Kurt A. & Connor, Jeffery D., 2012. "Drought Issues in Semi-arid and Arid Environments," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 27(3), pages 1-5.
    13. Kurt A. Schwabe & Iddo Kan & Keith C. Knapp, 2006. "Drainwater Management for Salinity Mitigation in Irrigated Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 133-149.
    14. Bradley Franklin & Keith C. Knapp & Kurt A. Schwabe, 2017. "A Dynamic Regional Model of Irrigated Perennial Crop Production," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradley Franklin & Keith C. Knapp & Kurt A. Schwabe, 2017. "A Dynamic Regional Model of Irrigated Perennial Crop Production," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-30, January.
    2. Levers, L.R. & Skaggs, T.H. & Schwabe, K.A., 2019. "Buying water for the environment: A hydro-economic analysis of Salton Sea inflows," Agricultural Water Management, Elsevier, vol. 213(C), pages 554-567.
    3. Julia de Frutos Cachorro & Katrin Erdlenbruch & Mabel Tidball, 2017. "A dynamic model of irrigation and land-use choice: application to the Beauce aquifer in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(1), pages 99-120.
    4. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    5. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    7. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    8. repec:bla:canjag:v:58:y:2010:i:s1:p:403-409 is not listed on IDEAS
    9. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    10. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    11. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    12. Calatrava-Leyva, Javier & Colmenero, Alberto Garrido, 2001. "Analisis del efecto de los mercados de agua sobre el beneficio de las explotaciones, la contaminacion por nitratos y el empleo eventual agrario," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 1(02), pages 1-21, December.
    13. Wang, Jingjing, 2022. "Harnessing natural attenuation to reduce CAFOs nitrate emissions: An integrated modeling approach," Ecological Economics, Elsevier, vol. 199(C).
    14. Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
    15. Donati, Michele & Bodini, Diego & Arfini, Filippo & Zezza, Annalisa, 2013. "An integrated PMP model to assess the development of agro-energy crops and the effect on water requirements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(3), pages 1-21, December.
    16. Welle, Paul D. & Medellín-Azuara, Josué & Viers, Joshua H. & Mauter, Meagan S., 2017. "Economic and policy drivers of agricultural water desalination in California’s central valley," Agricultural Water Management, Elsevier, vol. 194(C), pages 192-203.
    17. Rintaro Yamaguchi, 2021. "Genuine Savings and Sustainability with Resource Diffusion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 451-471, October.
    18. Bazen, Ernest F. & Roberts, Roland K. & Travis, John & Larson, James A., 2008. "Factors Affecting Hay Supply and Demand in Tennessee," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6889, Southern Agricultural Economics Association.
    19. Israel Finkelshtain & Iddo Kan & Mickey Rapaport‐Rom, 2020. "Substitutability of Freshwater and Non‐Freshwater Sources in Irrigation: an Econometric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1105-1134, August.
    20. Fabien Martinez, 2015. "A Three-Dimensional Conceptual Framework of Corporate Water Responsibility," Post-Print hal-02887624, HAL.
    21. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:971-:d:636356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.