IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p921-d627080.html
   My bibliography  Save this article

Evolution and Prediction of Landscape Patterns in the Qinghai Lake Basin

Author

Listed:
  • Yanli Han

    (College of Geographical Science, Qinghai Normal University, Xining 810008, China
    Key Laboratory of Qinghai Province Physical Geography and Environmental Process, MOK Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China)

  • Deyong Yu

    (College of Geographical Science, Qinghai Normal University, Xining 810008, China
    Key Laboratory of Qinghai Province Physical Geography and Environmental Process, MOK Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, China
    Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Kelong Chen

    (College of Geographical Science, Qinghai Normal University, Xining 810008, China
    Key Laboratory of Qinghai Province Physical Geography and Environmental Process, MOK Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Xining 810008, China)

Abstract

The Qinghai Lake Basin (QLB), located in the northeastern part of the Qinghai–Tibet Plateau, has a fragile ecological environment and is sensitive to global climate change. With the progress of societal and economic development, the tourism industry in the QLB has also developed rapidly, which is bound to result in great changes in landscape patterns. In this study, we first analyzed the change characteristics of landscape patterns in the QLB from 1990 to 2018, and we then used the Markov model and the future land use simulation (FLUS) model, combined with natural, social, and ecological factors, to predict the changes in the number and spatial distribution of landscape patterns in the period between 2026 and 2034. The results of the study show that desert areas have been greatly reduced and transformed into grasslands. The grassland area expanded from 49.22% in 1990 to 59.45% in 2018, corresponding to an increase of 10.23%. The direct cause of this result is the combined effects of natural and man-made factors, with the latter playing a leading role. As such, government decision-making is crucial. Lastly, we simulated the landscape patterns in the period from 2018 to 2034. The results show that in the next 16 years, the proportion of various landscapes will change little, and the spatial distribution will be stable. This research provides a reference for the formulation of ecological environment management and protection policies in the QLB.

Suggested Citation

  • Yanli Han & Deyong Yu & Kelong Chen, 2021. "Evolution and Prediction of Landscape Patterns in the Qinghai Lake Basin," Land, MDPI, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:921-:d:627080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    2. Marta Bottero & Giulia Datola & Elena De Angelis, 2020. "A System Dynamics Model and Analytic Network Process: An Integrated Approach to Investigate Urban Resilience," Land, MDPI, vol. 9(8), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Song & Ziyi Gao & Xianming Yang & Yuejing Ge, 2022. "Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin," Sustainability, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuling Ma & Jiajun Qiao & Dong Han, 2022. "Simulation and Prediction of Evolution of Specialized Villages Agglomeration Based on System Dynamics," Land, MDPI, vol. 11(8), pages 1-18, July.
    2. Zhenhua Wu & Qingqing Lu & Shaogang Lei & Qingwu Yan, 2021. "Study on Landscape Ecological Classification and Landscape Types Evolution: A Case Study of a Mining City in Semi-Arid Steppe," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    3. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    4. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    5. Ilia Alomía Herrera & Rose Paque & Michiel Maertens & Veerle Vanacker, 2022. "History of Land Cover Change on Santa Cruz Island, Galapagos," Land, MDPI, vol. 11(7), pages 1-24, July.
    6. Qinghe Zhao & Shengyan Ding & Xiaoyu Ji & Zhendong Hong & Mengwen Lu & Peng Wang, 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River," Land, MDPI, vol. 10(5), pages 1-21, May.
    7. Matthew D. Senyshen & Dongmei Chen, 2023. "The Impact of Land Cover Change on Surface Water Temperature of Small Lakes in Eastern Ontario from 1985 to 2020," Land, MDPI, vol. 12(3), pages 1-18, February.
    8. Marcello Schiavina & Michele Melchiorri & Christina Corbane & Aneta J. Florczyk & Sergio Freire & Martino Pesaresi & Thomas Kemper, 2019. "Multi-Scale Estimation of Land Use Efficiency (SDG 11.3.1) across 25 Years Using Global Open and Free Data," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    9. Gerard Olivar-Tost & Johnny Valencia-Calvo & Julián Andrés Castrillón-Gómez, 2020. "Towards Decision-Making for the Assessment and Prioritization of Green Projects: An Integration between System Dynamics and Participatory Modeling," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    10. Anabel Sanchez-Plaza & Annelies Broekman & Pilar Paneque, 2019. "Analytical Framework to Assess the Incorporation of Climate Change Adaptation in Water Management: Application to the Tordera River Basin Adaptation Plan," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    11. Can Yang & Tianxing Wei & Yiran Li, 2022. "Simulation and Spatio-Temporal Variation Characteristics of LULC in the Context of Urbanization Construction and Ecological Restoration in the Yellow River Basin," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    12. Hui Xu & Shuxiu Li & Yongtao Tan & Bin Xing, 2022. "Comprehensive Resilience Assessment of Complex Urban Public Spaces: A Perspective of Promoting Sustainability," Land, MDPI, vol. 11(6), pages 1-23, June.
    13. W. Saart, Patrick & Kim, Namhyun & Bateman, Ian, 2021. "Understanding spatial heterogeneity in GB agricultural land-use for improved policy targeting," Cardiff Economics Working Papers E2021/8, Cardiff University, Cardiff Business School, Economics Section.
    14. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    15. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    16. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    17. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    18. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    19. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    20. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:921-:d:627080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.