IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p83-d482101.html
   My bibliography  Save this article

Characterization of Soil Carbon Stocks in the City of Johannesburg

Author

Listed:
  • Kelebohile Rose Seboko

    (Department of Soil, Crop and Climate Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa)

  • Elmarie Kotze

    (Department of Soil, Crop and Climate Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa)

  • Johan van Tol

    (Department of Soil, Crop and Climate Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa)

  • George van Zijl

    (Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa)

Abstract

Soil organic carbon (SOC) is a crucial indicator of soil health and soil productivity. The long-term implications of rapid urbanization on sustainability have, in recent years, raised concern. This study aimed to characterize the SOC stocks in the Johannesburg Granite Dome, a highly urbanized and contaminated area. Six soil hydropedological groups; (recharge (deep), recharge (shallow), responsive (shallow), responsive (saturated), interflow (A/B), and interflow (soil/bedrock)) were identified to determine the vertical distribution of the SOC stocks and assess the variation among the soil groups. The carbon (C) content, bulk density, and soil depth were determined for all soil groups, and thereafter the SOC stocks were calculated. Organic C stocks in the A horizon ranged, on average, from 33.55 ± 21.73 t C ha −1 for recharge (deep) soils to 17.11 ± 7.62 t C ha −1 for responsive (shallow) soils. Higher C contents in some soils did not necessarily indicate higher SOC stocks due to the combined influence of soil depth and bulk density. Additionally, the total SOC stocks ranged from 92.82 ± 39.2 t C ha −1 for recharge (deep) soils to 22.81 ± 16.84 t C ha −1 for responsive (shallow) soils. Future studies should determine the SOC stocks in urban areas, taking diverse land-uses and the presence of iron (Fe) oxides into consideration. This is crucial for understanding urban ecosystem functions.

Suggested Citation

  • Kelebohile Rose Seboko & Elmarie Kotze & Johan van Tol & George van Zijl, 2021. "Characterization of Soil Carbon Stocks in the City of Johannesburg," Land, MDPI, vol. 10(1), pages 1-12, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:83-:d:482101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haroldo V. Ribeiro & Diego Rybski & Jürgen P. Kropp, 2019. "Effects of changing population or density on urban carbon dioxide emissions," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaco Kotzé & Johan van Tol, 2023. "Extrapolation of Digital Soil Mapping Approaches for Soil Organic Carbon Stock Predictions in an Afromontane Environment," Land, MDPI, vol. 12(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukáš Dvořáček & Martin Horák & Jaroslav Knápek, 2022. "Simulation of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Using Recuperated Braking Energy from Trains," Energies, MDPI, vol. 15(2), pages 1-28, January.
    2. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    3. James, Nick & Menzies, Max, 2022. "Global and regional changes in carbon dioxide emissions: 1970–2019," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    5. Peña, Guillermo & Puente-Ajovín, Miguel & Ramos, Arturo & Sanz-Gracia, Fernando, 2022. "Log-growth rates of CO2: An empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    6. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    7. Alonso-Fernández, Pablo & Regueiro-Ferreira, Rosa María, 2024. "The effect of the economic cycles on material requirements: Analysing the dematerialization in developed countries," Ecological Economics, Elsevier, vol. 222(C).
    8. Lesly Cassin & Paolo Melindi-Ghidi & Fabien Prieur, 2021. "The impact of income inequality on public environmental expenditure with green consumerism," Working Papers 2021.08, FAERE - French Association of Environmental and Resource Economists.
    9. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    10. Cheng, Lu & Mi, Zhifu & Sudmant, Andrew & Coffman, D'Maris, 2022. "Bigger cities better climate? Results from an analysis of urban areas in China," Energy Economics, Elsevier, vol. 107(C).
    11. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    12. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    13. Zhijun Li & Yigang Wei & Yan Li & Zhicheng Wang & Jinming Zhang, 2020. "China’s Provincial Eco-Efficiency and Its Driving Factors—Based on Network DEA and PLS-SEM Method," IJERPH, MDPI, vol. 17(22), pages 1-31, November.
    14. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Andreas Fazekas & Christopher Bataille & Adrien Vogt-Schilb, 2022. "Achieving net-zero prosperity: how governments can unlock 15 essential transformations," Post-Print halshs-03742125, HAL.
    16. Shi, Huiting & Chai, Jian & Lu, Quanying & Zheng, Jiali & Wang, Shouyang, 2022. "The impact of China's low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers," Energy, Elsevier, vol. 239(PD).
    17. Gomathy Sethuraman & Nurul Amalina Mohd Zain & Sumiani Yusoff & Yin Mei Ng & Niranjan Baisakh & Acga Cheng, 2021. "Revamping Ecosystem Services through Agroecology—The Case of Cereals," Agriculture, MDPI, vol. 11(3), pages 1-14, March.
    18. Lei, Weiqian & Jiao, Limin & Xu, Gang, 2022. "Understanding the urban scaling of urban land with an internal structure view to characterize China’s urbanization," Land Use Policy, Elsevier, vol. 112(C).
    19. J. C. Kitch & T. T. Nguyen & Q. C. Nguyen & Y. Hswen, 2023. "Changes in the relationship between Index of Concentration at the Extremes and U.S. urban greenspace: a longitudinal analysis from 2001–2019," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    20. Jack Sutton & Golnaz Shahtahmassebi & Haroldo V Ribeiro & Quentin S Hanley, 2022. "Population density and spreading of COVID-19 in England and Wales," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:83-:d:482101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.