IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p61-d478896.html
   My bibliography  Save this article

Soil-Quality Assessment during the Dry Season in the Mun River Basin Thailand

Author

Listed:
  • Chunsheng Wu

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Erfu Dai

    (Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Zhonghe Zhao

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Youxiao Wang

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Gaohuan Liu

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

Abstract

The Mun River Basin is one of Thailand’s major grain-producing areas, but the production is insufficient, and most of the cultivated lands are rain-fed and always unused in the dry season. All this makes it necessary to determine the status of soil nutrients and soil quality in the dry season to improve soil conditions, which will be useful for cultivation in the farming period. The aim of this study was to construct a soil-quality assessment based on soil samples, and in the process the minimum data set theory was introduced to screen the assessment indicators. The geographically weighted regression method was used to complete the spatial interpolation process of indicators, and the fuzzy logic model was constructed to evaluate the soil quality. The results showed that the spatial distributions of soil quality and indicators were similar. The soil quality was the best in the upstream while poor in the downstream, and the dry fields in the west and the forests in the east of the basin were better than other areas nearby. However; the soil qualities of paddy fields in the middle and east of the basin were poor due to the lack of soil nutrient supply when the fields were unused

Suggested Citation

  • Chunsheng Wu & Erfu Dai & Zhonghe Zhao & Youxiao Wang & Gaohuan Liu, 2021. "Soil-Quality Assessment during the Dry Season in the Mun River Basin Thailand," Land, MDPI, vol. 10(1), pages 1-12, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:61-:d:478896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/61/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arika Bridhikitti & Arocha Ketuthong & Thayukorn Prabamroong & Renzhi Li & Jing Li & Gaohuan Liu, 2023. "How Do Sustainable Development-Induced Land Use Change and Climate Change Affect Water Balance? A Case Study of the Mun River Basin, NE Thailand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2737-2756, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    2. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    5. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    6. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    7. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    8. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    9. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    10. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    11. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.
    12. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    13. Henderson, Daniel J. & Polachek, Solomon W. & Wang, Le, 2011. "Heterogeneity in schooling rates of return," Economics of Education Review, Elsevier, vol. 30(6), pages 1202-1214.
    14. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    15. Shin Young Kim & Benedikt Sapotta & Gilsoo Jang & Yong-Heack Kang & Hyun-Goo Kim, 2020. "Prefeasibility Study of Photovoltaic Power Potential Based on a Skew-Normal Distribution," Energies, MDPI, vol. 13(3), pages 1-12, February.
    16. Asaftei, Gabriel & Parmeter, Christopher F., 2010. "Market power, EU integration and privatization: The case of Romania," Journal of Comparative Economics, Elsevier, vol. 38(3), pages 340-356, September.
    17. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    18. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    19. Chaim, Pedro & Laurini, Márcio P., 2019. "Is Bitcoin a bubble?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 222-232.
    20. Shaan Khurshid & Julieta Lazarte & James P. Pirruccello & Lu-Chen Weng & Seung Hoan Choi & Amelia W. Hall & Xin Wang & Samuel F. Friedman & Victor Nauffal & Kiran J. Biddinger & Krishna G. Aragam & Pu, 2023. "Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:61-:d:478896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.