IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1221-d676037.html
   My bibliography  Save this article

Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy

Author

Listed:
  • Yuki Hamada

    (Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, Lemont, IL 60439, USA)

  • Colleen R. Zumpf

    (Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, Lemont, IL 60439, USA)

  • Jules F. Cacho

    (Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, Lemont, IL 60439, USA)

  • DoKyoung Lee

    (Crop Science Department, University of Illinois Urbana-Champaign, 1102 S Goodwin Avenue, Urbana, IL 61801, USA)

  • Cheng-Hsien Lin

    (Crop Science Department, University of Illinois Urbana-Champaign, 1102 S Goodwin Avenue, Urbana, IL 61801, USA)

  • Arvid Boe

    (Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box-2140C University Station, Brookings, SD 57007, USA)

  • Emily Heaton

    (Department of Agronomy, Iowa State University, 1223 Agronomy Hall, Ames, IA 50011, USA)

  • Robert Mitchell

    (USDA-ARS Wheat, Sorghum, and Forage Research Unit, 251 Filley Hall, East Campus, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

  • Maria Cristina Negri

    (Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, Lemont, IL 60439, USA)

Abstract

A sustainable bioeconomy would require growing high-yielding bioenergy crops on marginal agricultural areas with minimal inputs. To determine the cost competitiveness and environmental sustainability of such production systems, reliably estimating biomass yield is critical. However, because marginal areas are often small and spread across the landscape, yield estimation using traditional approaches is costly and time-consuming. This paper demonstrates the (1) initial investigation of optical remote sensing for predicting perennial bioenergy grass yields at harvest using a linear regression model with the green normalized difference vegetation index (GNDVI) derived from Sentinel-2 imagery and (2) evaluation of the model’s performance using data from five U.S. Midwest field sites. The linear regression model using midsummer GNDVI predicted yields at harvest with R 2 as high as 0.879 and a mean absolute error and root mean squared error as low as 0.539 Mg/ha and 0.616 Mg/ha, respectively, except for the establishment year. Perennial bioenergy grass yields may be predicted 152 days before the harvest date on average, except for the establishment year. The green spectral band showed a greater contribution for predicting yields than the red band, which is indicative of increased chlorophyll content during the early growing season. Although additional testing is warranted, this study showed a great promise for a remote sensing approach for forecasting perennial bioenergy grass yields to support critical economic and logistical decisions of bioeconomy stakeholders.

Suggested Citation

  • Yuki Hamada & Colleen R. Zumpf & Jules F. Cacho & DoKyoung Lee & Cheng-Hsien Lin & Arvid Boe & Emily Heaton & Robert Mitchell & Maria Cristina Negri, 2021. "Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy," Land, MDPI, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1221-:d:676037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    2. J. F. Cacho & M. C. Negri & C. R. Zumpf & P. Campbell, 2018. "Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(2), March.
    3. Cicek, H. & Sunohara, M. & Wilkes, G. & McNairn, H. & Pick, F. & Topp, E. & Lapen, D.R., 2010. "Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage," Agricultural Water Management, Elsevier, vol. 98(2), pages 261-270, December.
    4. Thomas Dietz & Jan Börner & Jan Janosch Förster & Joachim Von Braun, 2018. "Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    5. Marvin Duncan, 2003. "U.S. Federal Initiatives to Support Biomass Research and Development," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 193-201, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiyuan Tao & Ye Lin & Xing Wang & Jiayan Li & Chao Ma & Zhenkun Wang & Xinyue Dong & Peng Yao & Ming Shao, 2023. "Optimization of Green Spaces in Plain Urban Areas to Enhance Carbon Sequestration," Land, MDPI, vol. 12(6), pages 1-25, June.
    2. Jules F. Cacho & Jeremy Feinstein & Colleen R. Zumpf & Yuki Hamada & Daniel J. Lee & Nictor L. Namoi & DoKyoung Lee & Nicholas N. Boersma & Emily A. Heaton & John J. Quinn & Cristina Negri, 2023. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning," Energies, MDPI, vol. 16(10), pages 1-16, May.
    3. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuestas-Caza, Javier & Toledo, Lucía & Rodríguez, Fabricio, 2024. "Transcultural bioeconomy governance in a plurinational state: Sumak Kawsay and bio-based production in two Kichwa territories of Ecuador," Forest Policy and Economics, Elsevier, vol. 163(C).
    2. Daniela Firoiu & George H. Ionescu & Teodor Marian Cojocaru & Mariana Niculescu & Maria Nache Cimpoeru & Oana Alexandra Călin, 2023. "Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    3. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    5. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    6. Ju Han Yeon & Seung-hwan Jang, 2023. "The Relation between Bio-Industry Performance and Innovation Capacity—Focusing on the Korean Bio-Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    7. Pranav Nakhate & Yvonne van der Meer, 2021. "A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    8. Ayrapetyan, David & Hermans, Frans, 2020. "Introducing a multiscalar framework for biocluster research: A meta-analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(9).
    9. Marko Lovec & Luka Juvančič, 2021. "The Role of Industrial Revival in Untapping the Bioeconomy’s Potential in Central and Eastern Europe," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    11. Sven Wydra, 2019. "Value Chains for Industrial Biotechnology in the Bioeconomy-Innovation System Analysis," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    12. Benoit Mougenot & Jean-Pierre Doussoulin, 2022. "Conceptual evolution of the bioeconomy: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1031-1047, January.
    13. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Ronald S. Zalesny & Göran Berndes & Ioannis Dimitriou & Uwe Fritsche & Constance Miller & Mark Eisenbies & Solomon Ghezehei & Dennis Hazel & William L. Headlee & Blas Mola‐Yudego & M. Cristina Negri &, 2019. "Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    15. Marini, Michele & Caro, Dario & Thomsen, Marianne, 2023. "Investigating local policy instruments for different types of urban agriculture in four European cities: A case study analysis on the use and effectiveness of the applied policy instruments," Land Use Policy, Elsevier, vol. 131(C).
    16. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    17. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    18. Walther Zeug & Alberto Bezama & Urs Moesenfechtel & Anne Jähkel & Daniela Thrän, 2019. "Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    19. Alejandro Padilla-Rivera & Sara Russo-Garrido & Nicolas Merveille, 2020. "Addressing the Social Aspects of a Circular Economy: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    20. Emilio Abad-Segura & Ana Batlles-delaFuente & Mariana-Daniela González-Zamar & Luis Jesús Belmonte-Ureña, 2021. "Implications for Sustainability of the Joint Application of Bioeconomy and Circular Economy: A Worldwide Trend Study," Sustainability, MDPI, vol. 13(13), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1221-:d:676037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.