IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v7y2014i4p130-149d41684.html
   My bibliography  Save this article

Risk Management of Interest Rate Derivative Portfolios: A Stochastic Control Approach

Author

Listed:
  • Konstantinos Kiriakopoulos

    (Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-157 04 Athens, Greece)

  • Alexandros Koulis

    (Department of Business Administration, Technological Educational Institute of Central Greece, GR-344 00 Psahna, Evia, Greece)

Abstract

In this paper we formulate the Risk Management Control problem in the interest rate area as a constrained stochastic portfolio optimization problem. The utility that we use can be any continuous function and based on the viscosity theory, the unique solution of the problem is guaranteed. The numerical approximation scheme is presented and applied using a single factor interest rate model. It is shown how the whole methodology works in practice, with the implementation of the algorithm for a specific interest rate portfolio. The recent financial crisis showed that risk management of derivatives portfolios especially in the interest rate market is crucial for the stability of the financial system. Modern Value at Risk (VAR) and Conditional Value at Risk (CVAR) techniques, although very useful and easy to understand, fail to grasp the need for on-line controlling and monitoring of derivatives portfolio. The portfolios should be designed in a way that risk and return be quantified and controlled in every possible state of the world. We hope that this methodology contributes towards this direction.

Suggested Citation

  • Konstantinos Kiriakopoulos & Alexandros Koulis, 2014. "Risk Management of Interest Rate Derivative Portfolios: A Stochastic Control Approach," JRFM, MDPI, vol. 7(4), pages 1-20, October.
  • Handle: RePEc:gam:jjrfmx:v:7:y:2014:i:4:p:130-149:d:41684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/7/4/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/7/4/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. René M. Stulz, 2008. "Risk Management Failures: What Are They and When Do They Happen?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 20(4), pages 39-48, September.
    3. Ralph C. Kimball, 2000. "Failures in risk management," New England Economic Review, Federal Reserve Bank of Boston, issue Jan, pages 3-12.
    4. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    5. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    6. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    7. Hilliard, Jimmy E, 1999. "Analytics Underlying the Metallgesellschaft Hedge: Short Term Futures in a Multi-period Environment," Review of Quantitative Finance and Accounting, Springer, vol. 12(3), pages 195-219, May.
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    9. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    10. Robert Jarrow & Stuart Turnbull, 1994. "Delta, gamma and bucket hedging of interest rate derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 21-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    3. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    4. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    5. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    6. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Philippe Raimbourg & Paul Zimmermann, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," Post-Print hal-04011013, HAL.
    8. Juan M. Moraleda & Ton Vorst, 1996. "The Valuation of Interest Rate Derivatives: Empirical Evidence from the Spanish Market," Tinbergen Institute Discussion Papers 96-170/2, Tinbergen Institute.
    9. Gupta, Anurag & Subrahmanyam, Marti G., 2000. "An empirical examination of the convexity bias in the pricing of interest rate swaps," Journal of Financial Economics, Elsevier, vol. 55(2), pages 239-279, February.
    10. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    11. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    12. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    13. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    14. Fabio Mercurio & Juan Moraleda, 2001. "A family of humped volatility models," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 93-116.
    15. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    16. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    17. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    18. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    19. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    20. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2018. "A term structure model under cyclical fluctuations in interest rates," Economic Modelling, Elsevier, vol. 72(C), pages 140-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:7:y:2014:i:4:p:130-149:d:41684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.