IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i3p130-d1603681.html
   My bibliography  Save this article

Machine Learning as a Tool for Assessment and Management of Fraud Risk in Banking Transactions

Author

Listed:
  • Antonio Dichev

    (Department of Finance and Credit, Tsenov Academy of Economics, 5250 Svishtov, Bulgaria)

  • Silvia Zarkova

    (Department of Finance and Credit, Tsenov Academy of Economics, 5250 Svishtov, Bulgaria)

  • Petko Angelov

    (Department of Finance and Credit, Tsenov Academy of Economics, 5250 Svishtov, Bulgaria)

Abstract

The present work aims to fill the gaps in existing research on the application of machine learning in fraud detection and management in the banking sector. It provides a theoretical perspective on the evolution of algorithms, highlights practical aspects, and derives relevant metrics for evaluating their performance on unbalanced data. In the growing context of artificial intelligence, the adoption of an innovative, systematic approach to studying fraud in banking transactions through advanced machine learning algorithms is completely positive for the overall accuracy and effectiveness of risk management and has really practical and applied significance. The proven methodology (Classification and Regression Trees, Gradient Boosting, and Extreme Gradient Boosting) was tested on nearly 1.5 million in the banking sector, confirming the observations related to the application of fundamental assessments and specialized statistical methods through machine learning algorithms, demonstrating superior discriminatory power compared to classical models. The development provides valuable insights for managers, researchers, and policymakers aiming to strengthen the security and resilience of banking systems in times of evolving financial fraud challenges.

Suggested Citation

  • Antonio Dichev & Silvia Zarkova & Petko Angelov, 2025. "Machine Learning as a Tool for Assessment and Management of Fraud Risk in Banking Transactions," JRFM, MDPI, vol. 18(3), pages 1-17, March.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:3:p:130-:d:1603681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/3/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/3/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kočenda, Evžen & Iwasaki, Ichiro, 2020. "Bank survival in Central and Eastern Europe," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 860-878.
    2. Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022. "Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications," Food Policy, Elsevier, vol. 112(C).
    3. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    4. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    5. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).
    6. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    7. Cebula, Richard J. & Xu, Jiay, 2023. "A Brief Survey of Recent Studies of Bank Failures in the U.S," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 76(2), pages 265-274.
    8. Aleksandra Ostrowska, 2023. "Makroekonomiczne determinanty jakości kredytów dla sektora niefinansowego w Polsce," Bank i Kredyt, Narodowy Bank Polski, vol. 54(5), pages 541-556.
    9. Buckmann, Marcus & Gallego Marquez, Paula & Gimpelewicz, Mariana & Kapadia, Sujit & Rismanchi, Katie, 2021. "The more the merrier? Evidence from the global financial crisis on the value of multiple requirements in bank regulation," Bank of England working papers 905, Bank of England.
    10. Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2021. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, , vol. 42(1_suppl), pages 1-22, June.
    12. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
    13. de Haan, Jakob & Fang, Yi & Jing, Zhongbo, 2020. "Does the risk on banks’ balance sheets predict banking crises? New evidence for developing countries," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 254-268.
    14. Aykut Ekinci & Safa Sen, 2024. "Forecasting Bank Failure in the U.S.: A Cost-Sensitive Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3161-3179, December.
    15. Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
    16. Jakub Horak, 2021. "Sanctions as a Catalyst for Russia’s and China’s Balance of Trade: Business Opportunity," JRFM, MDPI, vol. 14(1), pages 1-26, January.
    17. Ren, Tingting & Li, Shaofang & Zhang, Siying, 2024. "Stock market extreme risk prediction based on machine learning: Evidence from the American market," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    18. Li Yao & He Ni, 2023. "Prediction of patent grant and interpreting the key determinants: an application of interpretable machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 4933-4969, September.
    19. João Gabriel Moraes Souza & Daniel Tavares Castro & Yaohao Peng & Ivan Ricardo Gartner, 2024. "A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1857-1890, September.
    20. Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022. "A machine learning approach to rank the determinants of banking crises over time and across countries," Journal of International Money and Finance, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:3:p:130-:d:1603681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.