IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i10p461-d1495707.html
   My bibliography  Save this article

Distortion Risk Measures of Increasing Rearrangement

Author

Listed:
  • Joachim Paulusch

    (R+V Lebensversicherung AG, Raiffeisenplatz 1, 65189 Wiesbaden, Germany)

  • Thorsten Moser

    (R+V Lebensversicherung AG, Raiffeisenplatz 1, 65189 Wiesbaden, Germany)

  • Anna Sulima

    (Katedra Ekonometrii i Badan Operacyjnych, Wroclaw University of Economics and Business, ul. Komandorska 118/120, 53-345 Wroclaw, Poland)

Abstract

Increasing rearrangement is a rewarding instrument in financial risk management. In practice, risks must be managed from different perspectives. A common example is the portfolio risk, which often can be seen from at least two perspectives: market value and book value. Different perspectives with different distributions can be coupled by increasing rearrangement. One distribution is regarded as underlying, and the other distribution can be expressed as an increasing rearrangement of the underlying distribution. Then, the risk measure for the latter can be expressed in terms of the underlying distribution. Our first objective is to introduce increasing rearrangement for application in financial risk management and to apply increasing rearrangement to the class of distortion risk measures. We derive formulae to compute risk measures in terms of the underlying distribution. Afterwards, we apply our results to a series of special distortion risk measures, namely the value at risk, expected shortfall, range value at risk, conditional value at risk, and Wang’s risk measure. Finally, we present the connection of increasing rearrangement with inverse transform sampling, Monte Carlo simulation, and cost-efficient strategies. Butterfly options serve as an illustrative example of the method.

Suggested Citation

  • Joachim Paulusch & Thorsten Moser & Anna Sulima, 2024. "Distortion Risk Measures of Increasing Rearrangement," JRFM, MDPI, vol. 17(10), pages 1-14, October.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:461-:d:1495707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/10/461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/10/461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cox, John C. & Leland, Hayne E., 2000. "On dynamic investment strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1859-1880, October.
    2. Burgert Christian & Rüschendorf Ludger, 2006. "Correction note: On the optimal risk allocation problem," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 303-303, December.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Burgert Christian & Rüschendorf Ludger, 2006. "On the optimal risk allocation problem," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-19, July.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Burgert Christian & Rüschendorf Ludger, 2006. "On the optimal risk allocation problem," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 153-171, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    2. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    3. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    4. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    5. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    6. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    7. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 123, Paderborn University, CIE Center for International Economics.
    8. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    9. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    10. Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
    11. Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 126, Paderborn University, CIE Center for International Economics.
    12. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    13. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    14. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera & Thorsten Schmidt, 2019. "Fair Estimation of Capital Risk Allocation," Papers 1902.10044, arXiv.org, revised Nov 2019.
    15. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    16. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    17. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    18. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    19. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    20. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:461-:d:1495707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.