IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i9p405-d1237457.html
   My bibliography  Save this article

Circular-Statistics-Based Estimators and Tests for the Index Parameter α of Distributions for High-Volatility Financial Markets

Author

Listed:
  • Ashis SenGupta

    (Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, India
    Department of Population Health Sciences, MCG, Augusta University, Augusta, GA 30912-4900, USA
    Department of Statistics, Middle East Technical University, Ankara 06800, Turkey)

  • Moumita Roy

    (Department of Statistics, Midnapore College (Autonomous), Midnapore 721101, India)

Abstract

The distributions for highly volatile financial time-series data are playing an increasingly important role in current financial scenarios and signal analyses. An important characteristic of such a probability distribution is its tail behaviour, determined through its tail thickness. This can be achieved by estimating the index parameter of the corresponding distribution. The normal and Cauchy distributions, and, sometimes, a mixture of the normal and Cauchy distributions, are suitable for modelling such financial data. The family of stable distributions can provide better modelling for such financial data sets. Financial data in high-volatility markets may be better modelled, in many cases, by the Linnik distribution in comparison to the stable distribution. This highly flexible family of distributions is better capable of modelling the inflection points and tail behaviour compared to the other existing models. The estimation of the tail thickness of heavy-tailed financial data is important in the context of modelling. However, the new probability distributions do not admit any closed analytical form of representation. Thus, novel methods need to be developed, as only a few can be found in the literature. Here, we recall a recent novel method, developed by the authors, based on a trigonometric moment estimator using circular distributions. The linear data may be transformed to yield circular data. This transformation is solely for yielding a suitable estimator. Our aim in this paper is to provide a review of the few existing methods, discuss some of their drawbacks, and also provide a universal ( ∀ α ∈ ( 0 , 2 ] ), efficient, and easily implementable estimator of α based on the transformation mentioned above. Novel, circular-statistics-based tests for the index parameter α of the stable and Linnik distributions are introduced and also exemplified with real-life financial data. Two real-life data sets are analysed to exemplify the methods recommended and enhanced by the authors.

Suggested Citation

  • Ashis SenGupta & Moumita Roy, 2023. "Circular-Statistics-Based Estimators and Tests for the Index Parameter α of Distributions for High-Volatility Financial Markets," JRFM, MDPI, vol. 16(9), pages 1-14, September.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:9:p:405-:d:1237457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/9/405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/9/405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raj Aggarwal & Brian M. Lucey, 2007. "Psychological barriers in gold prices?," Review of Financial Economics, John Wiley & Sons, vol. 16(2), pages 217-230.
    2. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    3. Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqi, Umema, 2021. "Estimating Long-Run Cointegration between Gold Prices and its Determinants," MPRA Paper 103182, University Library of Munich, Germany.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    4. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    5. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    6. Nawaz Ahmad & Syed Kashif Rafi & Muhammad Tariq, 2018. "Modeling Nonlinear Granger Causality And Co-Integration Between Gold Price Returns And Crude Oil Price Returns," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 14(2), pages 14-19.
    7. Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Forecasting the CNY-CNH pricing differential: The role of investor attention," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 232-247.
    8. César Carrera, 2015. "Tracking exchange rate management in Latin America," Review of Financial Economics, John Wiley & Sons, vol. 25(1), pages 35-41, April.
    9. Yaya, OlaOluwa S. & Lukman, Adewale F. & Vo, Xuan Vinh, 2022. "Persistence and volatility spillovers of bitcoin price to gold and silver prices," Resources Policy, Elsevier, vol. 79(C).
    10. Berk, Ales S. & Cummins, Mark & Dowling, Michael & Lucey, Brian M., 2017. "Psychological price barriers in frontier equities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 49(C), pages 1-14.
    11. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    12. Yury Khokhlov & Victor Korolev & Alexander Zeifman, 2020. "Multivariate Scale-Mixed Stable Distributions and Related Limit Theorems," Mathematics, MDPI, vol. 8(5), pages 1-29, May.
    13. Abid, Fathi & Kaffel, Bilel, 2018. "Time–frequency wavelet analysis of the interrelationship between the global macro assets and the fear indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1028-1045.
    14. Dexter Cahoy, 2012. "An estimation procedure for the Linnik distribution," Statistical Papers, Springer, vol. 53(3), pages 617-628, August.
    15. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    16. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    17. Bampinas, Georgios & Panagiotidis, Theodore, 2015. "Are gold and silver a hedge against inflation? A two century perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 267-276.
    18. Li, Dan & Liu, Lixin & Xu, Guangli, 2023. "Psychological barriers and option pricing in a local volatility model," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    19. Ahmad Alrazni Alshammari, Basheer Altarturi, Buerhan Saiti, Latifah Munassar, 2020. "The impact of exchange rate, oil price and gold price on the Kuwaiti stock market: a wavelet analysis," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 17(1), pages 31-54, June.
    20. Holmes, Mark J. & Otero, Jesús, 2023. "Psychological price barriers, El Niño, La Niña: New insights for the case of coffee," Journal of Commodity Markets, Elsevier, vol. 31(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:9:p:405-:d:1237457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.