IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i12p508-d1296044.html
   My bibliography  Save this article

Optimal and Non-Optimal MACD Parameter Values and Their Ranges for Stock-Index Futures: A Comparative Study of Nikkei, Dow Jones, and Nasdaq

Author

Listed:
  • Byung-Kook Kang

    (Department of Business Administration, Nanzan University, Nagoya 466-8673, Japan)

Abstract

This study investigates the optimal and non-optimal parameter values of the MACD (Moving Average Convergence Divergence) technical analysis indicator for three major stock market index futures: the Nikkei 225, the Dow Jones, and the Nasdaq. Using a recently developed methodology, it reveals the existence of specific ranges of optimal and non-optimal values for each of the three parameters of the MACD indicator in these indices. Sample models employing the optimal parameter values in the three index futures generated significantly higher returns, outperforming both a non-technical buy-and-hold strategy and a random strategy that did not incorporate any market information. This discovery suggests that the three market indices may not be weak-form efficient. Therefore, this study contributes to the research on market efficiency by verifying inefficiency using a new approach. The highlight of this study is identifying that the ranges of optimal parameter values for the three indices are different from each other, but the optimal parameter value combinations for each of the three indices share a unique characteristic form. This issue and its finding have not been explored in the existing literature. Several interesting findings and valuable insights for market participants and researchers arise from this study. The new methodology is unique in finding optimal and non-optimal parameter values through the analysis of parameter sets used in well-performing and poorly performing sample models. Its validity and reliability have been confirmed by this study, making a useful contribution to the field of technical analysis research, particularly in parameter optimization insight.

Suggested Citation

  • Byung-Kook Kang, 2023. "Optimal and Non-Optimal MACD Parameter Values and Their Ranges for Stock-Index Futures: A Comparative Study of Nikkei, Dow Jones, and Nasdaq," JRFM, MDPI, vol. 16(12), pages 1-27, December.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:508-:d:1296044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/12/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/12/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Stephan Schulmeister, 2023. "Stabilizing Asset Prices through Transition from Continuous Trading to Electronic Auctions," WIFO Working Papers 666, WIFO.
    3. Hakan Er & Adnan Hushmat, 2017. "The application of technical trading rules developed from spot market prices on futures market prices using CAPM," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(3), pages 313-353, December.
    4. Jin, Xiaoye, 2021. "What do we know about the popularity of technical analysis in foreign exchange markets? A skewness preference perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    5. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
    6. Ikhlaas Gurrib & Mohammad Nourani & Rajesh Kumar Bhaskaran, 2022. "Energy crypto currencies and leading U.S. energy stock prices: are Fibonacci retracements profitable?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-27, December.
    7. Ikhlaas Gurrib & Firuz Kamalov & Elgilani Elshareif, 2021. "Can the Leading US Energy Stock Prices be Predicted using the Ichimoku Cloud?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 41-51.
    8. Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
    9. Li-Xin Wang, 2014. "Dynamical Models of Stock Prices Based on Technical Trading Rules Part I: The Models," Papers 1401.1888, arXiv.org, revised Feb 2016.
    10. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    11. He, Xue-Zhong & Li, Youwei & Zheng, Min, 2019. "Heterogeneous agent models in financial markets: A nonlinear dynamics approach," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 135-149.
    12. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    13. Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
    14. Li-Xin Wang, 2014. "Dynamical Models of Stock Prices Based on Technical Trading Rules Part III: Application to Hong Kong Stocks," Papers 1401.1892, arXiv.org, revised Feb 2016.
    15. Didenko Alexander & Demicheva Svetlana, 2013. "Application of Ensemble Learning for views generation in Meucci portfolio optimization framework," Review of Business and Economics Studies, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1, pages 100-110.
    16. Cristiana Tudor & Andrei Anghel, 2021. "The Financialization of Crude Oil Markets and Its Impact on Market Efficiency: Evidence from the Predictive Ability and Performance of Technical Trading Strategies," Energies, MDPI, vol. 14(15), pages 1-19, July.
    17. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    18. Mario A Bertella & Felipe R Pires & Ling Feng & Harry Eugene Stanley, 2014. "Confidence and the Stock Market: An Agent-Based Approach," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    19. Jying‐Nan Wang & Hung‐Chun Liu & Jiangze Du & Yuan‐Teng Hsu, 2019. "Economic benefits of technical analysis in portfolio management: Evidence from global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 890-902, April.
    20. Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:508-:d:1296044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.