IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i5p193-d797960.html
   My bibliography  Save this article

Machine Learning Applications to Land and Structure Valuation

Author

Listed:
  • Michael Mayer

    (Actuarial Department, la Mobilière, 3001 Bern, Switzerland)

  • Steven C. Bourassa

    (Department of Urban and Regional Planning, Florida Atlantic University, Boca Raton, FL 33431, USA)

  • Martin Hoesli

    (Geneva School of Economics and Management, University of Geneva, 1211 Geneva, Switzerland
    Business School, University of Aberdeen Business School, Aberdeen AB24 3FX, UK)

  • Donato Scognamiglio

    (IAZI AG, 8050 Zurich, Switzerland
    Institute for Financial Management, University of Bern, 3012 Bern, Switzerland)

Abstract

In some applications of supervised machine learning, it is desirable to trade model complexity with greater interpretability for some covariates while letting other covariates remain a “black box”. An important example is hedonic property valuation modeling, where machine learning techniques typically improve predictive accuracy, but are too opaque for some practical applications that require greater interpretability. This problem can be resolved by certain structured additive regression (STAR) models, which are a rich class of regression models that include the generalized linear model (GLM) and the generalized additive model (GAM). Typically, STAR models are fitted by penalized least-squares approaches. We explain how one can benefit from the excellent predictive capabilities of two advanced machine learning techniques: deep learning and gradient boosting. Furthermore, we show how STAR models can be used for supervised dimension reduction and explain under what circumstances their covariate effects can be described in a transparent way. We apply the methodology to residential land and structure valuation, with very encouraging results regarding both interpretability and predictive performance.

Suggested Citation

  • Michael Mayer & Steven C. Bourassa & Martin Hoesli & Donato Scognamiglio, 2022. "Machine Learning Applications to Land and Structure Valuation," JRFM, MDPI, vol. 15(5), pages 1-24, April.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:5:p:193-:d:797960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/5/193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/5/193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allan Din & Martin Hoesli & Andre Bender, 2001. "Environmental Variables and Real Estate Prices," Urban Studies, Urban Studies Journal Limited, vol. 38(11), pages 1989-2000, October.
    2. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    3. Cankun Wei & Meichen Fu & Li Wang & Hanbing Yang & Feng Tang & Yuqing Xiong, 2022. "The Research Development of Hedonic Price Model-Based Real Estate Appraisal in the Era of Big Data," Land, MDPI, vol. 11(3), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    3. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez & Pablo Marti & Juan-Carlos Perez-Sanchez, 2019. "Determinants of the Price of Housing in the Province of Alicante (Spain): Analysis Using Quantile Regression," Sustainability, MDPI, vol. 11(2), pages 1-33, January.
    5. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    6. Jamie Roberman & Theophilus I. Emeto & Oyelola A. Adegboye, 2021. "Adverse Birth Outcomes Due to Exposure to Household Air Pollution from Unclean Cooking Fuel among Women of Reproductive Age in Nigeria," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    7. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    8. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    9. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Liebelt, Veronika & Bartke, Stephan & Schwarz, Nina, 2018. "Revealing Preferences for Urban Green Spaces: A Scale-sensitive Hedonic Pricing Analysis for the City of Leipzig," Ecological Economics, Elsevier, vol. 146(C), pages 536-548.
    11. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    12. Glumac, Brano & Herrera-Gomez, Marcos & Licheron, Julien, 2019. "A hedonic urban land price index," Land Use Policy, Elsevier, vol. 81(C), pages 802-812.
    13. Marzia Morena & Genny Cia & Liala Baiardi & Juan Sebastián Rodríguez Rojas, 2021. "Residential Property Behavior Forecasting in the Metropolitan City of Milan: Socio-Economic Characteristics as Drivers of Residential Market Value Trends," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    14. Ping Gao & Hikaru Hasegawa, 2018. "Bayesian Spatial Analysis Of Chronic Diseases In Elderly Chinese People Using A Star Model," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 645-669, December.
    15. Daniel Wiese & Antoinette M. Stroup & Alina Shevchenko & Sylvia Hsu & Kevin A. Henry, 2023. "Disparities in Cutaneous T-Cell Lymphoma Incidence by Race/Ethnicity and Area-Based Socioeconomic Status," IJERPH, MDPI, vol. 20(4), pages 1-10, February.
    16. Nikolaus Umlauf & Georg Mayr & Jakob Messner & Achim Zeileis, 2011. "Why Does It Always Rain on Me? A Spatio-Temporal Analysis of Precipitation in Austria," Working Papers 2011-25, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    18. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    19. Kamil Faisal & Ahmed Shaker, 2017. "An Investigation of GIS Overlay and PCA Techniques for Urban Environmental Quality Assessment: A Case Study in Toronto, Ontario, Canada," Sustainability, MDPI, vol. 9(3), pages 1-25, March.
    20. Ping Gao & Hikaru Hasegawa, 2018. "Bayesian Spatial Analysis Of Chronic Diseases In Elderly Chinese People Using A Star Model," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 645-670, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:5:p:193-:d:797960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.