IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i1p26-d721117.html
   My bibliography  Save this article

Simulating Multi-Asset Classes Prices Using Wasserstein Generative Adversarial Network: A Study of Stocks, Futures and Cryptocurrency

Author

Listed:
  • Feng Han

    (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

  • Xiaojuan Ma

    (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

  • Jiheng Zhang

    (Department of Industrial Engineering and Decision Analytics and Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

Abstract

Financial data are expensive and highly sensitive with limited access. We aim to generate abundant datasets given the original prices while preserving the original statistical features. We introduce the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) into the field of the stock market, futures market and cryptocurrency market. We train our model on various datasets, including the Hong Kong stock market, Hang Seng Index Composite stocks, precious metal futures contracts listed on the Chicago Mercantile Exchange and Japan Exchange Group, and cryptocurrency spots and perpetual contracts on Binance at various minute-level intervals. We quantify the difference of generated results (836,280 data points) and original data by MAE, MSE, RMSE and K-S distances. Results show that WGAN-GP can simulate assets prices and show the potential of a market simulator for trading analysis. We might be the first to look into multi-asset classes in a systematic approach with minute intervals across stocks, futures and cryptocurrency markets. We also contribute to quantitative analysis methodology for generated and original price data quality.

Suggested Citation

  • Feng Han & Xiaojuan Ma & Jiheng Zhang, 2022. "Simulating Multi-Asset Classes Prices Using Wasserstein Generative Adversarial Network: A Study of Stocks, Futures and Cryptocurrency," JRFM, MDPI, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:26-:d:721117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    2. David R. Meyer & George Guernsey, 2017. "Hong Kong and Singapore exchanges confront high frequency trading," Asia Pacific Business Review, Taylor & Francis Journals, vol. 23(1), pages 63-89, January.
    3. Mensi, Walid & Hernandez, Jose Arroeola & Yoon, Seong-Min & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Spillovers and connectedness between major precious metals and major currency markets: The role of frequency factor," International Review of Financial Analysis, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mammadov Huseyn & Africa Ruiz-Gandara & Luis Gonzalez-Abril & Isidoro Romero, 2024. "Adoption of Artificial Intelligence in Small and Medium-Sized Enterprises in Spain: The Role of Competences and Skills," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 848-848, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hua & Chen, Jinyu & Shao, Liuguo, 2021. "Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19," International Review of Financial Analysis, Elsevier, vol. 77(C).
    2. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Kyriazis, Nikolaos & Corbet, Shaen, 2024. "Evaluating the dynamic connectedness of financial assets and bank indices during black-swan events: A Quantile-VAR approach," Energy Economics, Elsevier, vol. 131(C).
    4. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    5. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    6. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    7. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    8. Gök, Remzi & Bouri, Elie & Gemici, Eray, 2023. "Volatility spillovers between sovereign CDS and futures markets in various volatility states: Evidence from an emerging economy around the pandemic," Research in International Business and Finance, Elsevier, vol. 66(C).
    9. Mensi, Walid & Ali, Syed Riaz Mahmood & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Multiscale dependence, spillovers, and connectedness between precious metals and currency markets: A hedge and safe-haven analysis," Resources Policy, Elsevier, vol. 77(C).
    10. Gider, Jasmin & Schmickler, Simon & Westheide, Christian, 2019. "High-frequency trading and price informativeness," SAFE Working Paper Series 248, Leibniz Institute for Financial Research SAFE, revised 2019.
    11. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    12. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Ali, Shoaib & Naveed, Muhammad & Al-Nassar, Nassar S. & Mirza, Nawazish, 2024. "Mineral Metamorphosis: Tracing the static and dynamic nexus between minerals and global south markets," Resources Policy, Elsevier, vol. 96(C).
    14. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    15. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2024. "Quantifying spillovers and connectedness among commodities and cryptocurrencies: Evidence from a Quantile-VAR analysis," Journal of Commodity Markets, Elsevier, vol. 33(C).
    16. Yıldırım, Durmuş Çağrı & Erdoğan, Fatma & Tarı, Elif Nur, 2022. "Time-varying volatility spillovers between real exchange rate and real commodity prices for emerging market economies," Resources Policy, Elsevier, vol. 76(C).
    17. Yash Thesia & Vidhey Oza & Priyank Thakkar, 2022. "A dynamic scenario‐driven technique for stock price prediction and trading," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 653-674, April.
    18. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    19. Raza, Syed Ali & Khan, Komal Akram, 2024. "Climate policy uncertainty and its relationship with precious metals price volatility: Comparative analysis pre and during COVID-19," Resources Policy, Elsevier, vol. 88(C).
    20. Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:26-:d:721117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.