IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i1p26-d721117.html
   My bibliography  Save this article

Simulating Multi-Asset Classes Prices Using Wasserstein Generative Adversarial Network: A Study of Stocks, Futures and Cryptocurrency

Author

Listed:
  • Feng Han

    (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

  • Xiaojuan Ma

    (Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

  • Jiheng Zhang

    (Department of Industrial Engineering and Decision Analytics and Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China
    Current address: Clear Water Bay, Sai Kung, New Territories, Hong Kong, China.)

Abstract

Financial data are expensive and highly sensitive with limited access. We aim to generate abundant datasets given the original prices while preserving the original statistical features. We introduce the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) into the field of the stock market, futures market and cryptocurrency market. We train our model on various datasets, including the Hong Kong stock market, Hang Seng Index Composite stocks, precious metal futures contracts listed on the Chicago Mercantile Exchange and Japan Exchange Group, and cryptocurrency spots and perpetual contracts on Binance at various minute-level intervals. We quantify the difference of generated results (836,280 data points) and original data by MAE, MSE, RMSE and K-S distances. Results show that WGAN-GP can simulate assets prices and show the potential of a market simulator for trading analysis. We might be the first to look into multi-asset classes in a systematic approach with minute intervals across stocks, futures and cryptocurrency markets. We also contribute to quantitative analysis methodology for generated and original price data quality.

Suggested Citation

  • Feng Han & Xiaojuan Ma & Jiheng Zhang, 2022. "Simulating Multi-Asset Classes Prices Using Wasserstein Generative Adversarial Network: A Study of Stocks, Futures and Cryptocurrency," JRFM, MDPI, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:26-:d:721117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David R. Meyer & George Guernsey, 2017. "Hong Kong and Singapore exchanges confront high frequency trading," Asia Pacific Business Review, Taylor & Francis Journals, vol. 23(1), pages 63-89, January.
    2. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    3. Mensi, Walid & Hernandez, Jose Arroeola & Yoon, Seong-Min & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Spillovers and connectedness between major precious metals and major currency markets: The role of frequency factor," International Review of Financial Analysis, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mammadov Huseyn & Africa Ruiz-Gandara & Luis Gonzalez-Abril & Isidoro Romero, 2024. "Adoption of Artificial Intelligence in Small and Medium-Sized Enterprises in Spain: The Role of Competences and Skills," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 848-848, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriazis, Nikolaos & Corbet, Shaen, 2024. "Evaluating the dynamic connectedness of financial assets and bank indices during black-swan events: A Quantile-VAR approach," Energy Economics, Elsevier, vol. 131(C).
    2. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    3. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    4. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    5. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    6. Gök, Remzi & Bouri, Elie & Gemici, Eray, 2023. "Volatility spillovers between sovereign CDS and futures markets in various volatility states: Evidence from an emerging economy around the pandemic," Research in International Business and Finance, Elsevier, vol. 66(C).
    7. Mensi, Walid & Ali, Syed Riaz Mahmood & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Multiscale dependence, spillovers, and connectedness between precious metals and currency markets: A hedge and safe-haven analysis," Resources Policy, Elsevier, vol. 77(C).
    8. Gider, Jasmin & Schmickler, Simon & Westheide, Christian, 2019. "High-frequency trading and price informativeness," SAFE Working Paper Series 248, Leibniz Institute for Financial Research SAFE, revised 2019.
    9. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    10. Ali, Shoaib & Naveed, Muhammad & Al-Nassar, Nassar S. & Mirza, Nawazish, 2024. "Mineral Metamorphosis: Tracing the static and dynamic nexus between minerals and global south markets," Resources Policy, Elsevier, vol. 96(C).
    11. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2024. "Quantifying spillovers and connectedness among commodities and cryptocurrencies: Evidence from a Quantile-VAR analysis," Journal of Commodity Markets, Elsevier, vol. 33(C).
    12. Goswami, Mangal & Pontines, Victor & Mohammed, Yassier, 2023. "Portfolio capital flows and the US dollar exchange rate: Viewed from the lens of time and frequency dynamics of connectedness," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Zijian Shi & Yu Chen & John Cartlidge, 2021. "The LOB Recreation Model: Predicting the Limit Order Book from TAQ History Using an Ordinary Differential Equation Recurrent Neural Network," Papers 2103.01670, arXiv.org.
    14. Cesario Mateus & Miramir Bagirov & Irina Mateus, 2024. "Return and volatility connectedness and net directional patterns in spillover transmissions: East and Southeast Asian equity markets," International Review of Finance, International Review of Finance Ltd., vol. 24(1), pages 83-103, March.
    15. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Time and frequency connectedness and network across the precious metal and stock markets: Evidence from top precious metal importers and exporters," Resources Policy, Elsevier, vol. 72(C).
    16. Spyros Papathanasiou & Dimitris Kenourgios & Drosos Koutsokostas & Georgios Pergeris, 2023. "Can treasury inflation-protected securities safeguard investors from outward risk spillovers? A portfolio hedging strategy through the prism of COVID-19," Journal of Asset Management, Palgrave Macmillan, vol. 24(3), pages 198-211, May.
    17. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised Mar 2023.
    19. Mensi, Walid & Vo, Xuan Vinh & Ko, Hee-Un & Kang, Sang Hoon, 2023. "Frequency spillovers between green bonds, global factors and stock market before and during COVID-19 crisis," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 558-580.
    20. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Multiscale spillovers, connectedness, and portfolio management among precious and industrial metals, energy, agriculture, and livestock futures," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:1:p:26-:d:721117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.