IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i9p411-d627341.html
   My bibliography  Save this article

Artificial Intelligence for Cluster Analysis: Case Study of Transport Companies in Czech Republic

Author

Listed:
  • Eva Kalinová

    (School of Expertness and Valuation, Institute of Technology and Business in České Budějovice, Okružní 517/10, 37001 České Budějovice, Czech Republic)

Abstract

What is the situation of the transport sector in the Czech Republic and what is its importance for the economy of the Czech Republic? How and to what extent do businesses operating in this sector influence the sector as such, and how many businesses in this sector have such influence? Additionally, what happens if the most important businesses in the transport sector go bankrupt, and which businesses are the most important ones? Searching for the answers to these questions is a subject of this contribution, focusing primarily on the cluster analysis using artificial neural networks (ANN), specifically with Kohonen networks, which represent the main method for processing a large volume of not only accounting data on transport companies. In this research, the dataset consists of the financial statements of transport companies for the years 2015–2018. The research part of the contribution deals mainly with the issue of the transport sector’s development in the years 2015–2018 with the companies operating in this sector and tries to identify the most important companies in terms of their importance for this sector. The results show that the whole transport sector is influenced mainly by the two largest companies, whose potential changes can affect companies themselves but to a great extent also the development of the whole transport sector. For the two companies, financial analysis is carried out using ratios, whose results show that despite the negative values of the important value generators of one of these companies, the company is still able to significantly influence the situation in the transport sector of the CR. This information is a clear guide for experts, development analysts, to determine the further development of the whole sector when focusing on the development of the two specific companies only. A question arises as to how the created model can be applied to other economic sectors, especially in other EU countries.

Suggested Citation

  • Eva Kalinová, 2021. "Artificial Intelligence for Cluster Analysis: Case Study of Transport Companies in Czech Republic," JRFM, MDPI, vol. 14(9), pages 1-36, September.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:9:p:411-:d:627341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/9/411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/9/411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maha Bakoben & Tony Bellotti & Niall Adams, 2017. "Identification of Credit Risk Based on Cluster Analysis of Account Behaviours," Papers 1706.07466, arXiv.org.
    2. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    3. Hui Li & Lu-Yao Hong & Qing Zhou & Hai-Jie Yu, 2015. "The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(11), pages 2072-2086, August.
    4. Inès Abdelkafi & Manel Zribi & Rochdi Feki, 2018. "New Classification of Developed and Emerging Countries Based on the Effects of Subprime Crises: Kohonen Map Method," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 908-927, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    2. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    3. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. Nyitrai, Tamás, 2014. "Növelhető-e a csőd-előrejelző modellek előre jelző képessége az új klasszifikációs módszerek nélkül? [Can the predictive capacity of bankruptcy forecasting models be increased without new classific," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 566-585.
    7. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    8. David Pla-Santamaria & Mila Bravo & Javier Reig-Mullor & Francisco Salas-Molina, 2021. "A multicriteria approach to manage credit risk under strict uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 494-523, July.
    9. Man Ha & Christopher Gan & Cuong Nguyen & Patricia Anthony, 2021. "Self-Organising (Kohonen) Maps for the Vietnam Banking Industry," JRFM, MDPI, vol. 14(10), pages 1-18, October.
    10. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    11. du Jardin, Philippe, 2021. "Forecasting corporate failure using ensemble of self-organizing neural networks," European Journal of Operational Research, Elsevier, vol. 288(3), pages 869-885.
    12. R. J. Kuo & Y. S. Tseng & Zhen-Yao Chen, 2016. "Integration of fuzzy neural network and artificial immune system-based back-propagation neural network for sales forecasting using qualitative and quantitative data," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1191-1207, December.
    13. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    14. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    15. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    16. Fernando Zambrano Farias & María del Carmen Valls Martínez & Pedro Antonio Martín-Cervantes, 2021. "Explanatory Factors of Business Failure: Literature Review and Global Trends," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    17. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    18. Yehui Tong & Ramon Saladrigues, 2022. "An analysis of factors affecting the profits of new firms in Spain: Evidence from the food industry," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(1), pages 28-38.
    19. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    20. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Business failure prediction models with high and stable predictive power over time using genetic programming," Operational Research, Springer, vol. 24(3), pages 1-41, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:9:p:411-:d:627341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.