IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i9p399-d621249.html
   My bibliography  Save this article

Utility Indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation

Author

Listed:
  • Pedro Pólvora

    (Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava, Slovakia)

  • Daniel Ševčovič

    (Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava, Slovakia)

Abstract

Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.

Suggested Citation

  • Pedro Pólvora & Daniel Ševčovič, 2021. "Utility Indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation," JRFM, MDPI, vol. 14(9), pages 1-12, August.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:9:p:399-:d:621249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/9/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/9/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Kallsen & Johannes Muhle-Karbe, 2015. "Option Pricing And Hedging With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 702-723, October.
    2. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Polvora & Daniel Sevcovic, 2021. "Utility indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation," Papers 2108.12598, arXiv.org.
    2. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    3. Peter Bank & Yan Dolinsky, 2020. "A Note on Utility Indifference Pricing with Delayed Information," Papers 2011.05023, arXiv.org, revised Mar 2021.
    4. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    5. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    6. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    7. Leippold, Markus & Schärer, Steven, 2017. "Discrete-time option pricing with stochastic liquidity," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 1-16.
    8. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    9. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    10. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    11. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    12. Stefan Gerhold & Johannes Muhle-Karbe & Walter Schachermayer, 2010. "The dual optimizer for the growth-optimal portfolio under transaction costs," Papers 1005.5105, arXiv.org, revised Oct 2010.
    13. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    14. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    15. Foldes, Lucien, 2000. "Valuation and martingale properties of shadow prices: An exposition," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1641-1701, October.
    16. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    17. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    18. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2015. "The pricing of contingent claims and optimal positions in asymptotically complete markets," Papers 1509.06210, arXiv.org, revised Sep 2016.
    19. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations," Papers 1707.00356, arXiv.org.
    20. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:9:p:399-:d:621249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.