IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i7p290-d581253.html
   My bibliography  Save this article

B2B Networking, Renewable Energy, and Sustainability

Author

Listed:
  • Davood Askarany

    (Department of Accounting & Finance, Business School, University of Auckland, Auckland 1010, New Zealand)

  • Hassan Yazdifar

    (Department of Accounting & Finance, Bournemouth University, 89 Holdenhurst Road, Bournemouth BH8 8EB, UK)

  • Kevin Dow

    (Department of Accounting & Finance, Business School, University of Auckland, Auckland 1010, New Zealand)

Abstract

While the benefits and advantages of using renewable energies are remarkable, and their prices have been decreasing dramatically and are expected to fall further, the diffusion and adoption of renewable energies still lag fossil energies. This paper improves our understanding regarding the role of the interrelationship among businesses (as an example of B2B networking amongst parent and subsidiary firms). Furthermore, it demonstrates the way/s that such interrelationships can contribute to the diffusion and adoption of sustainable and energy-efficient technologies. This study describes four diffusion channels in the interrelated firms which can help with promoting and using renewable and sustainable energies. The paper also reports the actual share of each diffusion channel contributing to implementing sustainable energy-efficient technologies in practice. The findings suggest that parent organisations enforce the majority (over 50%) of sustainable and energy-efficient technologies implemented in a B2B environment. In comparison, inter-subsidiary relationships are responsible for less than 30% of the implemented sustainable and energy-efficient technologies in organisations. The findings are in line with the forced perspective theory . They could, to some degree, explain the differences in the levels of implementation of sustainable and energy-efficient technologies in practice. These findings can help practitioners prioritise the diffusion channels when they want to facilitate the implementation of new technologies in their organisations. While some organisations may expect a more successful implementation of innovations initiated by subsidiaries than those enforced by parent organisations, the levels of success of the adoption of sustainable and energy-efficient technologies are not examined in this study. Further research is recommended to investigate the extent of association between different diffusion channels and the levels of success in terms of the adoption of innovation. We did not find similar studies to compare the results, which could be one of the limitations of this study.

Suggested Citation

  • Davood Askarany & Hassan Yazdifar & Kevin Dow, 2021. "B2B Networking, Renewable Energy, and Sustainability," JRFM, MDPI, vol. 14(7), pages 1-13, June.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:290-:d:581253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/7/290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/7/290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Worrell, Ernst & van Berkel, Rene & Fengqi, Zhou & Menke, Christoph & Schaeffer, Roberto & O. Williams, Robert, 2001. "Technology transfer of energy efficient technologies in industry: a review of trends and policy issues," Energy Policy, Elsevier, vol. 29(1), pages 29-43, January.
    2. Muhammad Farooq & Muhammad Asim & Muhammad Imran & Shahid Imran & Jameel Ahmad & Muhammad Rizwan Younis, 2018. "Mapping past, current and future energy research trend in Pakistan: a scientometric assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1733-1753, December.
    3. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    4. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    5. Yazdifar, Hassan & Askarany, Davood, 2012. "A comparative study of the adoption and implementation of target costing in the UK, Australia and New Zealand," International Journal of Production Economics, Elsevier, vol. 135(1), pages 382-392.
    6. Paul Almeida & Anupama Phene, 2004. "Subsidiaries and knowledge creation: the influence of the MNC and host country on innovation," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 847-864, August.
    7. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    9. Reddy, B. Sudhakara, 2018. "Economic dynamics and technology diffusion in indian power sector," Energy Policy, Elsevier, vol. 120(C), pages 425-435.
    10. Malmi, Teemu, 1999. "Activity-based costing diffusion across organizations: an exploratory empirical analysis of Finnish firms," Accounting, Organizations and Society, Elsevier, vol. 24(8), pages 649-672, November.
    11. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    12. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    13. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    14. Srinivasan, Suchita, 2019. "The light at the end of the tunnel: Impact of policy on the global diffusion of fluorescent lamps," Energy Policy, Elsevier, vol. 128(C), pages 907-918.
    15. Stucki, Tobias, 2019. "Which firms benefit from investments in green energy technologies? – The effect of energy costs," Research Policy, Elsevier, vol. 48(3), pages 546-555.
    16. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    17. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    18. Ali, Ghaffar & Yan, Ningyu & Hussain, Jafar & Xu, Lilai & Huang, Yunfeng & Xu, Su & Cui, Shenghui, 2019. "Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 230-238.
    19. Chien-Ming Chen & Magali A. Delmas, 2012. "Measuring Eco-Inefficiency: A New Frontier Approach," Operations Research, INFORMS, vol. 60(5), pages 1064-1079, October.
    20. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    21. Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
    22. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    23. Askarany, Davood & Yazdifar, Hassan, 2012. "An investigation into the mixed reported adoption rates for ABC: Evidence from Australia, New Zealand and the UK," International Journal of Production Economics, Elsevier, vol. 135(1), pages 430-439.
    24. Chang, Victor & Chen, Yian & (Justin) Zhang, Zuopeng & Xu, Qianwen Ariel & Baudier, Patricia & Liu, Ben S.C., 2021. "The market challenge of wind turbine industry-renewable energy in PR China and Germany," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
    2. Ying, Ying & Wang, Shixiang & Liu, Yang, 2022. "Make bricks without straw: Eco-innovation for resource-constrained firms in emerging markets," Technovation, Elsevier, vol. 114(C).
    3. Awijen, Haithem & Belaïd, Fateh & Zaied, Younes Ben & Hussain, Nazim & Lahouel, Béchir Ben, 2022. "Renewable energy deployment in the MENA region: Does innovation matter?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    5. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Horbach, Jens & Rammer, Christian, 2017. "Energy transition in Germany and regional spillovers: What triggers the diffusion of renewable energy in firms?," ZEW Discussion Papers 17-044, ZEW - Leibniz Centre for European Economic Research.
    7. Wang, Xiaoqing & Jin, Wenxin & Qin, Meng & Su, Chi-Wei & Umar, Muhammad, 2024. "Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?," Energy, Elsevier, vol. 301(C).
    8. Lirios Alos-Simo & Antonio J. Verdu-Jover & Jose M. Gomez-Gras, 2020. "Knowledge Transfer in Sustainable Contexts: A Comparative Analysis of Periods of Financial Recession and Expansion," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    9. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    10. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    11. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    12. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    13. Clara Inés Pardo Martínez, 2010. "Investments and Energy Efficiency in Colombian Manufacturing Industries," Energy & Environment, , vol. 21(6), pages 545-562, October.
    14. Tseng, Ming-Lang & Ardaniah, Viqi & Sujanto, Raditia Yudistira & Fujii, Minoru & Lim, Ming K., 2021. "Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    15. Adrián Rabadán & Ángela Triguero & Ángela Gonzalez-Moreno, 2020. "Cooperation as the Secret Ingredient in the Recipe to Foster Internal Technological Eco-Innovation in the Agri-Food Industry," IJERPH, MDPI, vol. 17(7), pages 1-19, April.
    16. Dong, Hanmin & Zhang, Lin & Zheng, Huanhuan, 2024. "Green bonds: Fueling green innovation or just a fad?," Energy Economics, Elsevier, vol. 135(C).
    17. Lan Khanh Chu, 2023. "Environmentally related technologies and environmental regulations in promoting renewable energy: evidence from OECD countries," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 177-197, March.
    18. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    19. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    20. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:290-:d:581253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.