IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i10p227-d419978.html
   My bibliography  Save this article

Blockchain and Cryptocurrencies

Author

Listed:
  • Stephen Chan

    (Department of Mathematics and Statistics, American University of Sharjah, Sharjah 26666, UAE)

  • Jeffrey Chu

    (School of Statistics, Renmin University of China, No. 59 Zhongguancun Street, Haidian District, Beijing 100872, China)

  • Yuanyuan Zhang

    (School of Mathematics, University of Manchester, Manchester M13 9PL, UK)

  • Saralees Nadarajah

    (School of Mathematics, University of Manchester, Manchester M13 9PL, UK)

Abstract

Cryptocurrencies are essentially digital currencies that use blockchain technology and cryptography to facilitate secure and anonymous transactions. Many institutions and countries are starting to understand and implement the idea of cryptocurrencies in their business models. With this recent surge in interest, we believe that now is the time to start studying these areas as a key piece of financial technology. The aim of this Special Issue is to provide a collection of papers from leading experts in the area of blockchain and cryptocurrencies. The topics covered in this Special Issue includes the economics, financial analysis and risk management with cryptocurrencies.

Suggested Citation

  • Stephen Chan & Jeffrey Chu & Yuanyuan Zhang & Saralees Nadarajah, 2020. "Blockchain and Cryptocurrencies," JRFM, MDPI, vol. 13(10), pages 1-3, September.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:10:p:227-:d:419978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/10/227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/10/227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    2. Νikolaos A. Kyriazis & Paraskevi Prassa, 2019. "Which Cryptocurrencies Are Mostly Traded in Distressed Times?," JRFM, MDPI, vol. 12(3), pages 1-12, August.
    3. Mircea Constantin Șcheau & Simona Liliana Crăciunescu & Iulia Brici & Monica Violeta Achim, 2020. "A Cryptocurrency Spectrum Short Analysis," JRFM, MDPI, vol. 13(8), pages 1-16, August.
    4. Nader Trabelsi, 2018. "Are There Any Volatility Spill-Over Effects among Cryptocurrencies and Widely Traded Asset Classes?," JRFM, MDPI, vol. 11(4), pages 1-17, October.
    5. Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    6. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    7. Paulo Ferreira & Éder Pereira, 2019. "Contagion Effect in Cryptocurrency Market," JRFM, MDPI, vol. 12(3), pages 1-8, July.
    8. Ahmed Ibrahim & Rasha Kashef & Menglu Li & Esteban Valencia & Eric Huang, 2020. "Bitcoin Network Mechanics: Forecasting the BTC Closing Price Using Vector Auto-Regression Models Based on Endogenous and Exogenous Feature Variables," JRFM, MDPI, vol. 13(9), pages 1-21, August.
    9. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyudmila Tolstolesova & Igor Glukhikh & Natalya Yumanova & Otabek Arzikulov, 2021. "Digital Transformation of Public-Private Partnership Tools," JRFM, MDPI, vol. 14(3), pages 1-17, March.
    2. Wang, Qiyu & Chong, Terence Tai-Leung, 2021. "Factor pricing of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    2. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    3. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    4. Shigeyuki Hamori, 2020. "Recent Advancements in Section “Financial Technology and Innovation”," JRFM, MDPI, vol. 13(12), pages 1-2, December.
    5. Rolando Rubilar-Torrealba & Karime Chahuán-Jiménez & Hanns de la Fuente-Mella, 2023. "A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    6. Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
    7. Proelss, Juliane & Sévigny, Stéphane & Schweizer, Denis, 2023. "GameFi: The perfect symbiosis of blockchain, tokens, DeFi, and NFTs?," International Review of Financial Analysis, Elsevier, vol. 90(C).
    8. Νikolaos A. Kyriazis & Paraskevi Prassa, 2019. "Which Cryptocurrencies Are Mostly Traded in Distressed Times?," JRFM, MDPI, vol. 12(3), pages 1-12, August.
    9. Nikolaos A. Kyriazis, 2021. "The Nexus of Sophisticated Digital Assets with Economic Policy Uncertainty: A Survey of Empirical Findings and an Empirical Investigation," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    11. Sanjib Kumar Nayak & Sarat Chandra Nayak & Subhranginee Das, 2021. "Modeling and Forecasting Cryptocurrency Closing Prices with Rao Algorithm-Based Artificial Neural Networks: A Machine Learning Approach," FinTech, MDPI, vol. 1(1), pages 1-16, December.
    12. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    13. Urom, Christian & Abid, Ilyes & Guesmi, Khaled & Chevallier, Julien, 2020. "Quantile spillovers and dependence between Bitcoin, equities and strategic commodities," Economic Modelling, Elsevier, vol. 93(C), pages 230-258.
    14. Michael McAleer, 2020. "Ten Most Highly Cited Papers in Journal of Risk and Financial Management (JRFM), 2018–2020," JRFM, MDPI, vol. 13(12), pages 1-5, November.
    15. Shaobin, Guo & Ahmad, Khalil & Khan, Naqib Ullah, 2024. "Natural resources, geopolitical conflicts, and digital trade: Evidence from China," Resources Policy, Elsevier, vol. 90(C).
    16. Shubhankar Mohapatra & Nauman Ahmed & Paulo Alencar, 2020. "KryptoOracle: A Real-Time Cryptocurrency Price Prediction Platform Using Twitter Sentiments," Papers 2003.04967, arXiv.org.
    17. Łęt, Blanka & Sobański, Konrad & Świder, Wojciech & Włosik, Katarzyna, 2023. "What drives the popularity of stablecoins? Measuring the frequency dynamics of connectedness between volatile and stable cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    18. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    19. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    20. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr & Vo, Xuan Vinh, 2021. "The pricing of bad contagion in cryptocurrencies: A four-factor pricing model," Finance Research Letters, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:10:p:227-:d:419978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.