IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i1p15-d198763.html
   My bibliography  Save this article

Limitation of Financial Health Prediction in Companies from Post-Communist Countries

Author

Listed:
  • Adriana Csikosova

    (Department of Earth sources Management, Faculty BERG, Technical University of Košice, 042 00 Košice, Slovakia)

  • Maria Janoskova

    (Department of Earth sources Management, Faculty BERG, Technical University of Košice, 042 00 Košice, Slovakia)

  • Katarina Culkova

    (Department of Earth sources Management, Faculty BERG, Technical University of Košice, 042 00 Košice, Slovakia)

Abstract

The financial health of a company can be seen as the ability to maintain a balance against changing conditions in the environment and at the same time in relation to everyone participating in the business. In the evaluation of financial health and prediction of financial problems of the companies, various indexes are used that can serve as input for expert estimation or creation of various models using, for example, multi-dimensional statistical methods. The practical application of the proper method for evaluation of financial health has been analysed in post-communist countries, since they have common historic experiences and economic interests. During the research we followed up the following indexes: Altman model, Taffler model, Springate model, and the index IN, based on multi-dimensional discrimination analysis. From the research results there is obvious a necessity to combine available methods in post-communist countries and at least to eliminate their disadvantages partially. Experiences from prediction models have proved their relatively high prediction ability, but only in perfect conditions, which cannot be affirmed in post-communist countries. The task remains to modify existing indexes to concrete situations and problems of the individual industries in the chosen countries, which have unique conditions for business making.

Suggested Citation

  • Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2019. "Limitation of Financial Health Prediction in Companies from Post-Communist Countries," JRFM, MDPI, vol. 12(1), pages 1-14, January.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:1:p:15-:d:198763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    2. Dang, Chongyu & (Frank) Li, Zhichuan & Yang, Chen, 2018. "Measuring firm size in empirical corporate finance," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 159-176.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Altman, Edward I. & Saunders, Anthony, 1997. "Credit risk measurement: Developments over the last 20 years," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1721-1742, December.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    9. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    10. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    11. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    2. Kateryna Boichenko & Mário Nuno Mata & Pedro Neves Mata & Jéssica Nunes Martins, 2021. "Impact of Financial Support on Textile Enterprises’ Development," JRFM, MDPI, vol. 14(3), pages 1-19, March.
    3. Roman Vavrek & Ivana Kravčáková Vozárová & Rastislav Kotulič, 2021. "Evaluating the Financial Health of Agricultural Enterprises in the Conditions of the Slovak Republic Using Bankruptcy Models," Agriculture, MDPI, vol. 11(3), pages 1-19, March.
    4. Andrea Majdáková & Blanka Giertliová & Iveta Hajdúchová, 2020. "Prediction by financial and economic analysis in the conditions of forest enterprises," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(1), pages 1-8.
    5. Chia-Lin Chang, 2020. "Editorial for Applied Econometrics," JRFM, MDPI, vol. 13(9), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    2. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    3. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    4. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    5. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    6. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    7. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    9. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    10. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    11. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    12. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    13. Abbas, Qaiser & Rashid, Abdul, 2011. "Modeling Bankruptcy Prediction for Non-Financial Firms: The Case of Pakistan," MPRA Paper 28161, University Library of Munich, Germany.
    14. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    15. M. Humayun Kabir & Fawzi Laswad, 2014. "The Behaviour of Earnings, Accruals and Impairment Losses of Failed New Zealand Finance Companies," Australian Accounting Review, CPA Australia, vol. 24(3), pages 262-275, September.
    16. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    17. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    18. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    20. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:1:p:15-:d:198763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.