IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v10y2022i1p7-d717849.html
   My bibliography  Save this article

Cannabis Stocks Returns: The Role of Liquidity and Investors’ Attention via Google Metrics

Author

Listed:
  • Stephanos Papadamou

    (Laboratory of Economic Policy and Strategic Planning, Department of Economics, University of Thessaly, 38333 Volos, Greece)

  • Alexandros Koulis

    (Department of Regional Development, Ionian University, 31100 Lefkada, Greece)

  • Constantinos Kyriakopoulos

    (Department of Mathematics, National and Kapodistrian University of Athens, 15772 Athens, Greece)

  • Athanasios P. Fassas

    (Department of Accounting and Finance, University of Thessaly, 41500 Larissa, Greece)

Abstract

This paper studies one of the most popular investment themes over recent years, investing in the cannabis industry. In particular, it investigates relationships between investor attention, as proxied by Google Trends, and stock market activities, i.e., return, volatility, and liquidity. To this end, in the empirical analysis we study how liquidity and investors’ attention affect the return dynamics of an investment in cannabis stocks by augmenting the three-factor Fama–French model. In addition, we use a vector autoregressive approach and the impulse response function to measure shock transmission between the variables under consideration. Our empirical findings show that there is a statistically positive relationship between cannabis stock returns and liquidity. We also find that increased investors’ attention results in higher returns.

Suggested Citation

  • Stephanos Papadamou & Alexandros Koulis & Constantinos Kyriakopoulos & Athanasios P. Fassas, 2022. "Cannabis Stocks Returns: The Role of Liquidity and Investors’ Attention via Google Metrics," IJFS, MDPI, vol. 10(1), pages 1-11, January.
  • Handle: RePEc:gam:jijfss:v:10:y:2022:i:1:p:7-:d:717849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/10/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/10/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    2. Ayad Assoil & Ndéné Ka & Jules Sadefo-Kamdem, 2021. "Analysis of the dynamic relationship between liquidity proxies and returns on the French CAC 40 index," SN Business & Economics, Springer, vol. 1(10), pages 1-23, October.
    3. Ayad Assoil & Ndéné Ka & Jules Sadefo Kamdem, 2021. "Analysis of the Dynamic Relationship between Liquidityproxies and returns on French CAC 40 index," Working Papers hal-03282991, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
    2. Fathin Faizah Said & Raja Solan Somasuntharam & Mohd Ridzwan Yaakub & Tamat Sarmidi, 2023. "Impact of Google searches and social media on digital assets’ volatility," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    3. Zheng, Yan & Wen, Fenghua & Deng, Hanshi & Zeng, Aiqing, 2022. "The relationship between carbon market attention and the EU CET market: Evidence from different market conditions," Finance Research Letters, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    2. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    3. Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Forecasting the CNY-CNH pricing differential: The role of investor attention," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 232-247.
    4. Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    5. Ding, Rong & Hou, Wenxuan & Liu, Yue (Lucy) & Zhang, John Ziyang, 2018. "Media censorship and stock price: Evidence from the foreign share discount in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 112-133.
    6. Ronald MacDonald & Xuxin Mao, 2015. "An Alternative way of Predicting the Outcome of the Scottish Independence Referendum: The Information in the Ether," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-69, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Ribeiro-Soriano, Domingo, 2020. "Does investor attention influence water companies’ stock returns?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Chen, Hongtao & Fang, Xiumei & Xiang, Erwei & Ji, Xiaojia & An, Maolin, 2023. "Do online media and investor attention affect corporate environmental information disclosure?Evidence from Chinese listed companies," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 1022-1040.
    9. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "An alternative approach to predicting bank credit risk in Europe with Google data," Finance Research Letters, Elsevier, vol. 35(C).
    10. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    11. Shuang Wang & Shukuan Zhao & Dong Shao & Hongyu Liu, 2020. "Impact of Government Subsidies on Manufacturing Innovation in China: The Moderating Role of Political Connections and Investor Attention," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    12. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    13. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    14. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    15. Chen, Zhongdong & Schmidt, Adam & Wang, Jin’ai, 2021. "Retail investor risk-seeking, attention, and the January effect," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    16. Ronald MacDonald & Xuxin Mao, "undated". "An Alternative way of predicting the putcome of the Scottish Independence Referendum: the information in the Ether," Working Papers 2015_05, Business School - Economics, University of Glasgow.
    17. Zheng, Yan & Wen, Fenghua & Deng, Hanshi & Zeng, Aiqing, 2022. "The relationship between carbon market attention and the EU CET market: Evidence from different market conditions," Finance Research Letters, Elsevier, vol. 50(C).
    18. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).
    19. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    20. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:10:y:2022:i:1:p:7-:d:717849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.