IDEAS home Printed from https://ideas.repec.org/p/edn/sirdps/677.html
   My bibliography  Save this paper

An Alternative way of Predicting the Outcome of the Scottish Independence Referendum: The Information in the Ether

Author

Listed:
  • Ronald MacDonald
  • Xuxin Mao

Abstract

No abstract is available for this item.

Suggested Citation

  • Ronald MacDonald & Xuxin Mao, 2015. "An Alternative way of Predicting the Outcome of the Scottish Independence Referendum: The Information in the Ether," SIRE Discussion Papers 2015-69, Scottish Institute for Research in Economics (SIRE).
  • Handle: RePEc:edn:sirdps:677
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10943/677
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    2. Aouadi, Amal & Arouri, Mohamed & Teulon, Frédéric, 2013. "Investor attention and stock market activity: Evidence from France," Economic Modelling, Elsevier, vol. 35(C), pages 674-681.
    3. Chris Brooks & Sotiris Tsolacos, 1999. "The impact of economic and financial factors on UK property performance," Journal of Property Research, Taylor & Francis Journals, vol. 16(2), pages 139-152, January.
    4. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    5. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    6. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    7. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    8. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    9. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    10. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    11. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronald McDonald & Xuxin Mao, 2015. "Forecasting the 2015 General Election with Internet Big Data: An Application of the TRUST Framework," Working Papers 2016_03, Business School - Economics, University of Glasgow.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronald MacDonald & Xuxin Mao, 2015. "An Alternative way of Predicting the Outcome of the Scottish Independence Referendum: The Information in the Ether," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-69, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    3. Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    5. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    7. Tariq Aziz & Valeed Ahmad Ansari, 2021. "How Does Google Search Affect the Stock Market? Evidence from Indian Companies," Vision, , vol. 25(2), pages 224-232, June.
    8. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    9. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    10. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    11. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    12. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
    13. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    14. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    15. Cheng, Feiyang & Chiao, Chaoshin & Wang, Chunfeng & Fang, Zhenming & Yao, Shouyu, 2021. "Does retail investor attention improve stock liquidity? A dynamic perspective," Economic Modelling, Elsevier, vol. 94(C), pages 170-183.
    16. Salisu, Afees A. & Vo, Xuan Vinh, 2021. "Firm-specific news and the predictability of Consumer stocks in Vietnam," Finance Research Letters, Elsevier, vol. 41(C).
    17. Sifat, Imtiaz Mohammad & Thaker, Hassanudin Mohd Thas, 2020. "Predictive power of web search behavior in five ASEAN stock markets," Research in International Business and Finance, Elsevier, vol. 52(C).
    18. Adachi, Yuta & Masuda, Motoki & Takeda, Fumiko, 2017. "Google search intensity and its relationship to the returns and liquidity of Japanese startup stocks," Pacific-Basin Finance Journal, Elsevier, vol. 46(PB), pages 243-257.
    19. Tripathi, Abhinava & Pandey, Ashish, 2021. "Information dissemination across global markets during the spread of COVID-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 103-115.
    20. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:sirdps:677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/sireeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.