IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v9y2012i11p3943-3953d21084.html
   My bibliography  Save this article

Forest Dynamics and Their Phenological Response to Climate Warming in the Khingan Mountains, Northeastern China

Author

Listed:
  • Hongyan Cai

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Shuwen Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province 130012, China)

  • Xiaohuan Yang

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The Khingan Mountain region, the most important and typical natural foci of tick-borne encephalitis (TBE) in China, is the largest and northernmost forest area and the one more sensitive to climate change. Taking this region as the study area, we investigated the spatio-temporal dynamics of deciduous broadleaf forest (DBF) and its phenology changes in relation to climate change and elevation. Based on MODIS Enhanced Vegetation Index (EVI) time series over the period of 2001 to 2009, the start-of-season (SOS), length-of-season (LOS) and another two vegetation variables (seasonal amplitude (SA) and integrated EVI (SI)) were derived. Over the past decade, the DBF in Khingan Mountains has generally degraded and over 65% of DBF has experienced negative SA and SI trends. Earlier trends in SOS and longer trends in LOS for DBF were observed, and these trends were mainly caused by climate warming. In addition, results from our analysis also indicated that the effects of temperature on DBF phenology were elevation dependent. The magnitude of advancement in SOS and extension in LOS with temperature increase significantly increased along a raising elevation gradient.

Suggested Citation

  • Hongyan Cai & Shuwen Zhang & Xiaohuan Yang, 2012. "Forest Dynamics and Their Phenological Response to Climate Warming in the Khingan Mountains, Northeastern China," IJERPH, MDPI, vol. 9(11), pages 1-11, October.
  • Handle: RePEc:gam:jijerp:v:9:y:2012:i:11:p:3943-3953:d:21084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/9/11/3943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/9/11/3943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    2. Annette Menzel & Peter Fabian, 1999. "Growing season extended in Europe," Nature, Nature, vol. 397(6721), pages 659-659, February.
    3. José Miguel Barrios & Willem W. Verstraeten & Piet Maes & Jan Clement & Jean-Marie Aerts & Sara Amirpour Haredasht & Julie Wambacq & Katrien Lagrou & Geneviève Ducoffre & Marc Van Ranst & Daniel Berck, 2010. "Satellite Derived Forest Phenology and Its Relation with Nephropathia Epidemica in Belgium," IJERPH, MDPI, vol. 7(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Oteros & Herminia García-Mozo & Roser Botey & Antonio Mestre & Carmen Galán, 2015. "Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012)," Climatic Change, Springer, vol. 130(4), pages 545-558, June.
    2. Sara Amirpour Haredasht & Miguel Barrios & Jamshid Farifteh & Piet Maes & Jan Clement & Willem W. Verstraeten & Katrien Tersago & Marc Van Ranst & Pol Coppin & Daniel Berckmans & Jean-Marie Aerts, 2013. "Ecological Niche Modelling of Bank Voles in Western Europe," IJERPH, MDPI, vol. 10(2), pages 1-16, January.
    3. Brice B. Hanberry & Marc D. Abrams & Gregory J. Nowacki, 2024. "Potential Interactions between Climate Change and Land Use for Forest Issues in the Eastern United States," Land, MDPI, vol. 13(3), pages 1-20, March.
    4. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    5. Machado, Elia Axinia & Purcell, Helene & Simons, Andrew M. & Swinehart, Stephanie, 2020. "The Quest for Greener Pastures: Evaluating the Livelihoods Impacts of Providing Vegetation Condition Maps to Pastoralists in Eastern Africa," Ecological Economics, Elsevier, vol. 175(C).
    6. Czesław Koźmiński & Agnieszka Mąkosza & Jadwiga Nidzgorska-Lencewicz & Bożena Michalska, 2023. "Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C)," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    7. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    8. Yawe, Bruno Lule, 2014. "Changes in climatic factors and malaria in Uganda," WIDER Working Paper Series 111, World Institute for Development Economic Research (UNU-WIDER).
    9. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    10. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    11. Andrei Lapenis & Hugh Henry & Mathias Vuille & James Mower, 2014. "Climatic factors controlling plant sensitivity to warming," Climatic Change, Springer, vol. 122(4), pages 723-734, February.
    12. KK Pandey & BVS Sisodia & VN Rai, 2017. "Preliminary Observations on the Behavior ofFeral Chickens (Jungle Fowl) on the Island of Kauai Reflections on Domestication as Complexity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 4(4), pages 112-116, - Septemb.
    13. Bruno Lule Yawe, 2014. "Changes in Climatic Factors and Malaria in Uganda," WIDER Working Paper Series wp-2014-111, World Institute for Development Economic Research (UNU-WIDER).
    14. Kim, Sohee & Kang, Sinkyu & Lim, Jong-Hwan & Chun, Jung-Hwa & Sung, Joo-Han, 2012. "Regional parameterization of canopy onset models using MODIS and flowering onset data," Ecological Modelling, Elsevier, vol. 247(C), pages 190-198.
    15. Ken Mix & Vicente Lopes & Walter Rast, 2012. "Growing season expansion and related changes in monthly temperature and growing degree days in the Inter-Montane Desert of the San Luis Valley, Colorado," Climatic Change, Springer, vol. 114(3), pages 723-744, October.
    16. Viorica GAVRILĂ, 2017. "The Stability of Fruit Production Under the Impact of Climate Factors – Scientific Literature-Based Approaches," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 14(2), pages 267-274.
    17. Georgeta Bandoc & Adrian Piticar & Cristian Patriche & Bogdan Roșca & Elena Dragomir, 2022. "Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    18. Chai, Xi & Shi, Peili & Song, Minghua & Zong, Ning & He, Yongtao & Zhao, Guangshai & Zhang, Xianzhou, 2019. "Carbon flux phenology and net ecosystem productivity simulated by a bioclimatic index in an alpine steppe-meadow on the Tibetan Plateau," Ecological Modelling, Elsevier, vol. 394(C), pages 66-75.
    19. Franziska Kolek & Maria Del Pilar Plaza & Vivien Leier-Wirtz & Arne Friedmann & Claudia Traidl-Hoffmann & Athanasios Damialis, 2021. "Earlier Flowering of Betula pendula Roth in Augsburg, Germany, Due to Higher Temperature, NO 2 and Urbanity, and Relationship with Betula spp. Pollen Season," IJERPH, MDPI, vol. 18(19), pages 1-17, September.
    20. Russell, Stephen & Barron, Andrew B. & Harris, David, 2013. "Dynamic modelling of honey bee (Apis mellifera) colony growth and failure," Ecological Modelling, Elsevier, vol. 265(C), pages 158-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:9:y:2012:i:11:p:3943-3953:d:21084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.