IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i7p5318-d1111212.html
   My bibliography  Save this article

Predicting the HIV/AIDS Knowledge among the Adolescent and Young Adult Population in Peru: Application of Quasi-Binomial Logistic Regression and Machine Learning Algorithms

Author

Listed:
  • Alejandro Aybar-Flores

    (Department of Engineering, Universidad del Pacífico, Lima 15072, Peru)

  • Alvaro Talavera

    (Department of Engineering, Universidad del Pacífico, Lima 15072, Peru)

  • Elizabeth Espinoza-Portilla

    (Faculty of Health Sciences, School of Medicine, Universidad Continental, Lima 15046, Peru)

Abstract

Inadequate knowledge is one of the principal obstacles for preventing HIV/AIDS spread. Worldwide, it is reported that adolescents and young people have a higher vulnerability of being infected. Thus, the need to understand youths’ knowledge towards HIV/AIDS becomes crucial. This study aimed to identify the determinants and develop a predictive model to estimate HIV/AIDS knowledge among this target population in Peru. Data from the 2019 DHS Survey were used. The software RStudio and RapidMiner were used for quasi-binomial logistic regression and computational model building, respectively. Five classification algorithms were considered for model development and their performance was assessed using accuracy, sensitivity, specificity, FPR, FNR, Cohen’s kappa, F1 score and AUC. The results revealed an association between 14 socio-demographic, economic and health factors and HIV/AIDS knowledge. The accuracy levels were estimated between 59.47 and 64.30%, with the random forest model showing the best performance (64.30%). Additionally, the best classifier showed that the gender of the respondent, area of residence, wealth index, region of residence, interviewee’s age, highest educational level, ethnic self-perception, having heard about HIV/AIDS in the past, the performance of an HIV/AIDS screening test and mass media access have a major influence on HIV/AIDS knowledge prediction. The results suggest the usefulness of the associations found and the random forest model as a predictor of knowledge of HIV/AIDS and may aid policy makers to guide and reinforce the planning and implementation of healthcare strategies.

Suggested Citation

  • Alejandro Aybar-Flores & Alvaro Talavera & Elizabeth Espinoza-Portilla, 2023. "Predicting the HIV/AIDS Knowledge among the Adolescent and Young Adult Population in Peru: Application of Quasi-Binomial Logistic Regression and Machine Learning Algorithms," IJERPH, MDPI, vol. 20(7), pages 1-29, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5318-:d:1111212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/7/5318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/7/5318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    2. Dandan Tang & Man Zhang & Jiabo Xu & Xueliang Zhang & Fang Yang & Huling Li & Li Feng & Kai Wang & Yujian Zheng, 2018. "Application of Data Mining Technology on Surveillance Report Data of HIV/AIDS High-Risk Group in Urumqi from 2009 to 2015," Complexity, Hindawi, vol. 2018, pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Berk{e}sewicz & Herman Cherniaiev & Robert Pater, 2021. "Estimating the number of entities with vacancies using administrative and online data," Papers 2106.03263, arXiv.org.
    2. J. Michael Brick & Michael E. Jones, 2008. "Propensity to respond and nonresponse bias," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 51-73.
    3. Jacques Muthusi & Samuel Mwalili & Peter Young, 2019. "%svy_logistic_regression: A generic SAS macro for simple and multiple logistic regression and creating quality publication-ready tables using survey or non-survey data," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    4. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    5. Fenton, Alex, 2013. "Small-area measures of income poverty," LSE Research Online Documents on Economics 58053, London School of Economics and Political Science, LSE Library.
    6. repec:cep:sticas:/173 is not listed on IDEAS
    7. Mei‐Chih Meg Tseng & Yi‐Ping Lin & Fu‐Chang Hu & Tsun‐Jen Cheng, 2013. "Risks Perception of Electromagnetic Fields in Taiwan: The Influence of Psychopathology and the Degree of Sensitivity to Electromagnetic Fields," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2002-2012, November.
    8. Raphael Nishimura & James Wagner & Michael Elliott, 2016. "Alternative Indicators for the Risk of Non-response Bias: A Simulation Study," International Statistical Review, International Statistical Institute, vol. 84(1), pages 43-62, April.
    9. Camelia Herman & Colleen M. Leonard & Perpetua Uhomoibhi & Mark Maire & Delynn Moss & Uwem Inyang & Ado Abubakar & Abiodun Ogunniyi & Nwando Mba & Stacie M. Greby & McPaul I. Okoye & Nnaemeka C. Iriem, 2023. "Non-falciparum malaria infection and IgG seroprevalence among children under 15 years in Nigeria, 2018," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Elijah O. Onsomu & DaKysha Moore & Benta A. Abuya & Peggy Valentine & Vanessa Duren-Winfield, 2013. "Importance of the Media in Scaling-Up HIV Testing in Kenya," SAGE Open, , vol. 3(3), pages 21582440134, July.
    11. Vinas-Forcade, Jennifer & Seijas, María Noé, 2021. "To teach or not to teach: Negative selection into the teaching profession in Uruguay," International Journal of Educational Development, Elsevier, vol. 84(C).
    12. Zhongqi Fan & Amy M. Yang & Marcus Lehr & Ana B. Ronan & Ryan B. Simpson & Kimberly H. Nguyen & Elena N. Naumova & Naglaa H. El-Abbadi, 2024. "Food Insecurity across Age Groups in the United States during the COVID-19 Pandemic," IJERPH, MDPI, vol. 21(8), pages 1-19, August.
    13. Lenis, David & Ackerman, Benjamin & Stuart, Elizabeth A., 2018. "Measuring model misspecification: Application to propensity score methods with complex survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 48-57.
    14. Sofia Gil-Clavel & Emilio Zagheni & Valeria Bordone, 2022. "Close Social Networks Among Older Adults: The Online and Offline Perspectives," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 1111-1135, June.
    15. Matthew R. Williams & Terrance D. Savitsky, 2021. "Uncertainty Estimation for Pseudo‐Bayesian Inference Under Complex Sampling," International Statistical Review, International Statistical Institute, vol. 89(1), pages 72-107, April.
    16. Jeanna Parsons Leigh & Kirsten Fiest & Rebecca Brundin-Mather & Kara Plotnikoff & Andrea Soo & Emma E Sypes & Liam Whalen-Browne & Sofia B Ahmed & Karen E A Burns & Alison Fox-Robichaud & Shelly Kupsc, 2020. "A national cross-sectional survey of public perceptions of the COVID-19 pandemic: Self-reported beliefs, knowledge, and behaviors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    17. Wang, Jianqiang C., 2012. "Sample distribution function based goodness-of-fit test for complex surveys," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 664-679.
    18. Liu, Chia & Olamijuwon, Emmanuel, 2024. "The link between intimate partner violence and spousal resource inequality in lower- and middle-income countries," Social Science & Medicine, Elsevier, vol. 345(C).
    19. Joseph R Starnes & Chiara Di Gravio & Rebecca Irlmeier & Ryan Moore & Vincent Okoth & Ash Rogers & Daniele J Ressler & Troy D Moon, 2021. "Characterizing multidimensional poverty in Migori County, Kenya and its association with depression," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-10, November.
    20. Christian A. Maino Vieytes & Ruoqing Zhu & Francesca Gany & Amirah Burton-Obanla & Anna E. Arthur, 2022. "Empirical Dietary Patterns Associated with Food Insecurity in U.S. Cancer Survivors: NHANES 1999–2018," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
    21. Inghels, Maxime & Kim, Hae-Young & Mathenjwa, Thulile & Shahmanesh, Maryam & Seeley, Janet & Wyke, Sally & McGrath, Nuala & Sartorius, Benn & Yapa, H. Manisha & Dobra, Adrian & Bärnighausen, Till & Ta, 2022. "Can a conditional financial incentive (CFI) reduce socio-demographic inequalities in home-based HIV testing uptake? A secondary analysis of the HITS clinical trial intervention in rural South Africa," Social Science & Medicine, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5318-:d:1111212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.