IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3706-d1073744.html
   My bibliography  Save this article

The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review

Author

Listed:
  • Andreia F. Mesquita

    (Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Fernando J. M. Gonçalves

    (Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Ana M. M. Gonçalves

    (Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
    University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal)

Abstract

In recent decades, pollution levels have increased, mainly as a result of the intensive anthropogenic activities such industrial development, intensive agricultural practices, among others. The impact of metals and organic contaminants is, nowadays, a great concern to the scientific and political communities. Copper compounds are the main sold pesticides in Europe, as well as herbicides, including glyphosate. Diphenyl ethers are the second ones most sold. Glyphosate and copper compounds are intensively studied, but the opposite is seen in the case of diphenyl ethers, including fluorinated pesticides (e.g., oxyfluorfen). Some research has been performed to increase the knowledge about these contaminants, daily inputted on the aquatic systems and with dangerous effects at physical and biochemical levels on the organisms. A wide range of biomarkers (e.g., growth, survival, reproductive success, enzymatic activity, lipid metabolism) has been applied to determine the potential effects in many species. This review intends to: (a) perform a compilation of the knowledge in previous research about the action mode of organic (fluorinated-based herbicide) and inorganic (copper-based pesticides) contaminants; (b) carry out an information survey about the lethal and sub-lethal effects of the fluorinated-based pesticides, namely the oxyfluorfen and the copper-based pesticides, on aquatic species from different trophic levels, according to in vitro and in vivo studies; (c) understand the impact of oxyfluorfen and copper-based pesticides, considering their effects reported in in vitro studies and, simultaneously, the authorized concentrations by legal organizations and the effective concentrations of each pollutant found in the environment. The literature analyzed revealed noxious effects of Cu and oxyfluorfen to aquatic organisms, including freshwater and marine species, even when exposed to the reference as well as to environmental concentrations, thus highlighting the importance of more monitoring and ecotoxicological studies, to chemical pollutants and different species from different ecological niches, to sustain and improve the legislation.

Suggested Citation

  • Andreia F. Mesquita & Fernando J. M. Gonçalves & Ana M. M. Gonçalves, 2023. "The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides—A Review," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3706-:d:1073744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schreinemachers, Pepijn & Tipraqsa, Prasnee, 2012. "Agricultural pesticides and land use intensification in high, middle and low income countries," Food Policy, Elsevier, vol. 37(6), pages 616-626.
    2. Fátima Jesus & Filipa Mesquita & Elisa Virumbrales Aldama & Ana Marques & Ana M. M. Gonçalves & Luísa Magalhães & António J. A. Nogueira & Ana Ré & Isabel Campos & Joana Luísa Pereira & Fernando J. M., 2023. "Do Freshwater and Marine Bivalves Differ in Their Response to Wildfire Ash? Effects on the Antioxidant Defense System and Metal Body Burden," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
    3. Zijian Li & Aaron Jennings, 2017. "Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review," IJERPH, MDPI, vol. 14(7), pages 1-41, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanping Hu, 2020. "What Socio-Economic and Political Factors Lead to Global Pesticide Dependence? A Critical Review from a Social Science Perspective," IJERPH, MDPI, vol. 17(21), pages 1-22, November.
    2. Charles A. Osunla & Anthony I. Okoh, 2017. "Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa," IJERPH, MDPI, vol. 14(10), pages 1-27, October.
    3. Mashura Shammi & Nazmul Hasan & Md. Mostafizur Rahman & Kohinoor Begum & Md. Tajuddin Sikder & Mohammad Hossain Bhuiyan & Md. Khabir Uddin, 2017. "Sustainable pesticide governance in Bangladesh: socio-economic and legal status interlinking environment, occupational health and food safety," Environment Systems and Decisions, Springer, vol. 37(3), pages 243-260, September.
    4. Ruiyao Ying & Li Zhou & Wuyang Hu & Dan Pan, 2017. "Agricultural technical education and agrochemical use by rice farmers in China," Agribusiness, John Wiley & Sons, Ltd., vol. 33(4), pages 522-536, September.
    5. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    6. Feng, Shuaizhang & Han, Yujie & Qiu, Huanguang, 2021. "Does crop insurance reduce pesticide usage? Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    7. Grovermann, Christian & Schreinemachers, Pepijn & Berger, Thomas, 2015. "Evaluation of IPM adoption and financial instruments to reduce pesticide use in Thai agriculture using econometrics and agent-based modeling," 2015 Conference, August 9-14, 2015, Milan, Italy 211690, International Association of Agricultural Economists.
    8. Stephen C. Bondy & Arezoo Campbell, 2017. "Water Quality and Brain Function," IJERPH, MDPI, vol. 15(1), pages 1-15, December.
    9. Rattiya Suddeephong Lippe & Ulrike Grote, 2017. "Determinants Affecting Adoption of GLOBALG.A.P. Standards: A Choice Experiment in Thai Horticulture," Agribusiness, John Wiley & Sons, Ltd., vol. 33(2), pages 242-256, April.
    10. Jin-Jing Xiao & Yang Li & Qing-Kui Fang & Yan-Hong Shi & Min Liao & Xiang-Wei Wu & Ri-Mao Hua & Hai-Qun Cao, 2017. "Factors Affecting Transfer of Pyrethroid Residues from Herbal Teas to Infusion and Influence of Physicochemical Properties of Pesticides," IJERPH, MDPI, vol. 14(10), pages 1-12, September.
    11. Xiang Gao & Binglong Li & Song Jiang & Yunbin Nie, 2021. "Can Increasing Scale Efficiency Curb Agricultural Nonpoint Source Pollution?," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    12. Siyu Gong & Bo Wang & Zhigang Yu, 2022. "Whether the Use of the Internet Can Assist Farmers in Selecting Biopesticides or Not: A Study Based on Evidence from the Largest Rice-Producing Province in China," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. Sabrina Tait & Gabriele Lori & Roberta Tassinari & Cinzia La Rocca & Francesca Maranghi, 2022. "In Vitro Assessment and Toxicological Prioritization of Pesticide Mixtures at Concentrations Derived from Real Exposure in Occupational Scenarios," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    14. Snyder, Jason & Smart, Jennifer & Goeb, Joey & Tschirley, David, 2015. "Pesticide use in Sub-Saharan Africa: Estimates, Projections, and Implications in the Context of Food System Transformation," Miscellaneous Publications 230980, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    15. Marina Teófilo Pignati & Juarez Carlos Brito Pezzuti & Larissa Costa de Souza & Marcelo De Oliveira Lima & Wanderlei Antonio Pignati & Rosivaldo De Alcântara Mendes, 2018. "Assessment of Mercury Concentration in Turtles ( Podocnemis unifilis ) in the Xingu River Basin, Brazil," IJERPH, MDPI, vol. 15(6), pages 1-11, June.
    16. Margaret J. Eggers & John T. Doyle & Myra J. Lefthand & Sara L. Young & Anita L. Moore-Nall & Larry Kindness & Roberta Other Medicine & Timothy E. Ford & Eric Dietrich & Albert E. Parker & Joseph H. H, 2018. "Community Engaged Cumulative Risk Assessment of Exposure to Inorganic Well Water Contaminants, Crow Reservation, Montana," IJERPH, MDPI, vol. 15(1), pages 1-34, January.
    17. Agata Di Noi & Silvia Casini & Tommaso Campani & Giampiero Cai & Ilaria Caliani, 2021. "Review on Sublethal Effects of Environmental Contaminants in Honey Bees ( Apis mellifera ), Knowledge Gaps and Future Perspectives," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Xiang, Tao & Malik, Tariq H. & Nielsen, Klaus, 2020. "The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    19. Asghar Bagheri & Naier Emami & Christos A. Damalas, 2023. "Monitoring point source pollution by pesticide use: an analysis of farmers’ environmental behavior in waste disposal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6711-6726, July.
    20. Hans-Peter Hutter & Michael Kundi & Kathrin Lemmerer & Michael Poteser & Lisbeth Weitensfelder & Peter Wallner & Hanns Moshammer, 2018. "Subjective Symptoms of Male Workers Linked to Occupational Pesticide Exposure on Coffee Plantations in the Jarabacoa Region, Dominican Republic," IJERPH, MDPI, vol. 15(10), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3706-:d:1073744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.