IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2496-d1052057.html
   My bibliography  Save this article

Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing

Author

Listed:
  • Felix Made

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
    Global Biostatistics and Programming, Pharmaceutical Product Development, Part of Thermofisher Scientific, Woodmead, Johannesburg 2191, South Africa)

  • Ngianga-Bakwin Kandala

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
    Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6G 2M1, Canada
    Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa, Kinshasa XI, Mont Ngafula, Kinshasa B.P. 774, Democratic Republic of the Congo)

  • Derk Brouwer

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa)

Abstract

Occupational exposure assessment is important in preventing occupational coal worker’s diseases. Methods have been proposed to assess compliance with exposure limits which aim to protect workers from developing diseases. A Bayesian framework with informative prior distribution obtained from historical or expert judgements has been highly recommended for compliance testing. The compliance testing is assessed against the occupational exposure limits (OEL) and categorization of the exposure, ranging from very highly controlled to very poorly controlled exposure groups. This study used a Bayesian framework from historical and expert elicitation data to compare the posterior probabilities of the 95th percentile (P95) of the coal dust exposures to improve compliance assessment and decision-making. A total of 10 job titles were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation was used to draw a full posterior probability of finding a job title to an exposure category. A modified IDEA (“Investigate”, “Discuss”, “Estimate”, and “Aggregate”) technique was used to conduct expert elicitation. The experts were asked to give their subjective probabilities of finding coal dust exposure of a job title in each of the exposure categories. Sensitivity analysis was done for parameter space to check for misclassification of exposures. There were more than 98% probabilities of the P95 exposure being found in the poorly controlled exposure group when using expert judgments. Historical data and non-informative prior tend to show a lower probability of finding the P95 in higher exposure categories in some titles unlike expert judgments. Expert judgements tend to show some similarity in findings with historical data. We recommend the use of expert judgements in occupational risk assessment as prior information before a decision is made on current exposure when historical data are unavailable or scarce.

Suggested Citation

  • Felix Made & Ngianga-Bakwin Kandala & Derk Brouwer, 2023. "Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2496-:d:1052057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A.M. Hanea & M.F. McBride & M.A. Burgman & B.C. Wintle, 2018. "Classical meets modern in the IDEA protocol for structured expert judgement," Journal of Risk Research, Taylor & Francis Journals, vol. 21(4), pages 417-433, April.
    2. Uris Lantz C Baldos & Frederi G Viens & Thomas W Hertel & Keith O Fuglie, 2019. "R&D Spending, Knowledge Capital, and Agricultural Productivity Growth: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 291-310.
    3. Felix Made & Ngianga-Bakwin Kandala & Derk Brouwer, 2022. "Bayesian Hierarchical Modelling of Historical Data of the South African Coal Mining Industry for Compliance Testing," IJERPH, MDPI, vol. 19(8), pages 1-11, April.
    4. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Ijzerman & Lotte Steuten, 2011. "Early assessment of medical technologies to inform product development and market access," Applied Health Economics and Health Policy, Springer, vol. 9(5), pages 331-347, September.
    2. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    3. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    4. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    5. Nicholas M. Kiefer, 2011. "Default estimation, correlated defaults, and expert information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 173-192, March.
    6. Hertel, By Thomas W. & Baldos, Uris L.C. & Fuglie, Keith O., 2020. "Trade in technology: A potential solution to the food security challenges of the 21st century," European Economic Review, Elsevier, vol. 127(C).
    7. Ross Gruetzemacher & Kang Bok Lee & David Paradice, 2024. "Calibration training for improving probabilistic judgments using an interactive app," Futures & Foresight Science, John Wiley & Sons, vol. 6(2), June.
    8. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    9. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    10. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    11. K J Wilson & M Farrow, 2010. "Bayes linear kinematics in the analysis of failure rates and failure time distributions," Journal of Risk and Reliability, , vol. 224(4), pages 309-321, December.
    12. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    13. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.
    14. Nicholas M. Kiefer, 2017. "Correlated defaults, temporal correlation, expert information and predictability of default rates," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 699-712, October.
    15. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    16. Michał Gazdecki & Grzegorz Leszczyński & Marek Zieliński, 2021. "Food Sector as an Interactive Business World: A Framework for Research on Innovations," Energies, MDPI, vol. 14(11), pages 1-19, June.
    17. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    18. Alfredo Bateman y Javier E. Martinez & Javier Esteban Martinez, 2010. "Cuaderno 4: Análisis de las fuentes de oferta y demanda en el mercado de divisas," Cuadernos de Desarrollo Económico 7586, Secretaría Distrital de Desarrollo Económico.
    19. Nicholas Longford, 2014. "Policy-related small-area estimation," Economics Working Papers 1427, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2496-:d:1052057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.