IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2496-d1052057.html
   My bibliography  Save this article

Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing

Author

Listed:
  • Felix Made

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
    Global Biostatistics and Programming, Pharmaceutical Product Development, Part of Thermofisher Scientific, Woodmead, Johannesburg 2191, South Africa)

  • Ngianga-Bakwin Kandala

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
    Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6G 2M1, Canada
    Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa, Kinshasa XI, Mont Ngafula, Kinshasa B.P. 774, Democratic Republic of the Congo)

  • Derk Brouwer

    (School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa)

Abstract

Occupational exposure assessment is important in preventing occupational coal worker’s diseases. Methods have been proposed to assess compliance with exposure limits which aim to protect workers from developing diseases. A Bayesian framework with informative prior distribution obtained from historical or expert judgements has been highly recommended for compliance testing. The compliance testing is assessed against the occupational exposure limits (OEL) and categorization of the exposure, ranging from very highly controlled to very poorly controlled exposure groups. This study used a Bayesian framework from historical and expert elicitation data to compare the posterior probabilities of the 95th percentile (P95) of the coal dust exposures to improve compliance assessment and decision-making. A total of 10 job titles were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation was used to draw a full posterior probability of finding a job title to an exposure category. A modified IDEA (“Investigate”, “Discuss”, “Estimate”, and “Aggregate”) technique was used to conduct expert elicitation. The experts were asked to give their subjective probabilities of finding coal dust exposure of a job title in each of the exposure categories. Sensitivity analysis was done for parameter space to check for misclassification of exposures. There were more than 98% probabilities of the P95 exposure being found in the poorly controlled exposure group when using expert judgments. Historical data and non-informative prior tend to show a lower probability of finding the P95 in higher exposure categories in some titles unlike expert judgments. Expert judgements tend to show some similarity in findings with historical data. We recommend the use of expert judgements in occupational risk assessment as prior information before a decision is made on current exposure when historical data are unavailable or scarce.

Suggested Citation

  • Felix Made & Ngianga-Bakwin Kandala & Derk Brouwer, 2023. "Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2496-:d:1052057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A.M. Hanea & M.F. McBride & M.A. Burgman & B.C. Wintle, 2018. "Classical meets modern in the IDEA protocol for structured expert judgement," Journal of Risk Research, Taylor & Francis Journals, vol. 21(4), pages 417-433, April.
    2. Uris Lantz C Baldos & Frederi G Viens & Thomas W Hertel & Keith O Fuglie, 2019. "R&D Spending, Knowledge Capital, and Agricultural Productivity Growth: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 291-310.
    3. Felix Made & Ngianga-Bakwin Kandala & Derk Brouwer, 2022. "Bayesian Hierarchical Modelling of Historical Data of the South African Coal Mining Industry for Compliance Testing," IJERPH, MDPI, vol. 19(8), pages 1-11, April.
    4. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia R. Falconer & Eibe Frank & Devon L. L. Polaschek & Chaitanya Joshi, 2022. "Methods for Eliciting Informative Prior Distributions: A Critical Review," Decision Analysis, INFORMS, vol. 19(3), pages 189-204, September.
    2. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    3. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    4. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    5. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    6. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    7. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    8. Michał Gazdecki & Grzegorz Leszczyński & Marek Zieliński, 2021. "Food Sector as an Interactive Business World: A Framework for Research on Innovations," Energies, MDPI, vol. 14(11), pages 1-19, June.
    9. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    10. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    11. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    12. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    13. Johan René van Dorp & Salvador Cruz Rambaud & José García Pérez & Rafael Herrerías Pleguezuelo, 2007. "An Elicitation Procedure for the Generalized Trapezoidal Distribution with a Uniform Central Stage," Decision Analysis, INFORMS, vol. 4(3), pages 156-166, September.
    14. William N. Caballero & Ethan Gharst & David Banks & Jeffery D. Weir, 2023. "Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach," Decision Analysis, INFORMS, vol. 20(1), pages 16-39, March.
    15. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.
    16. Anna Chrysafi & Vili Virkki & Mika Jalava & Vilma Sandström & Johannes Piipponen & Miina Porkka & Steven J. Lade & Kelsey Mere & Lan Wang-Erlandsson & Laura Scherer & Lauren S. Andersen & Elena Bennet, 2022. "Quantifying Earth system interactions for sustainable food production via expert elicitation," Nature Sustainability, Nature, vol. 5(10), pages 830-842, October.
    17. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 677-698.
    18. Nicholas Longford, 2014. "Incompatibility of estimation and policy objectives. An example from small-area estimation," Economics Working Papers 1447, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Chad Kendall & Tommaso Nannicini & Francesco Trebbi, 2015. "How Do Voters Respond to Information? Evidence from a Randomized Campaign," American Economic Review, American Economic Association, vol. 105(1), pages 322-353, January.
    20. Christopher C. Hadlock & J. Eric Bickel, 2017. "Johnson Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 14(1), pages 35-64, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2496-:d:1052057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.